Formation and control of the harmful ingredients during the decaying process of cyanobacteria from Lake Chaohu

LI Yonghui, LI Yucheng, WANG Ning & WU Juan
(School of Resources and Environmental Engineering, Anhui University, Hefei 230601, P. R. China)

Abstract: Cyanobacteria after outbreak and being randomly distributed produced microcystins, polycyclic aromatic hydrocarbons, harmful gases and other toxic substances. In this paper, the process of cyanobacteria decaying was simulated in laboratory, and the changes of organic elements, chloroform extracts A, saturated hydrocarbons and aromatic hydrocarbon during decaying of cyanobacteria had been surveyed. On this basis, we discussed the countermeasure of aromatic hydrocarbons and other toxic substances produced from the accumulation cyanobacteria. Results showed that after 1-month aerobic and 1-month anaerobic decaying, the contents of total aromatics and polycyclic aromatic hydrocarbons in cyanobacteria were decreased to the lowest. Besides, the anaerobic treatment increased the content of total aromatics slightly. The longer the action time of aerobic, the higher content of saturated hydrocarbons, and to the highest in cyanobacteria after 3-month aerobic decaying. N-alkanes will occur relatively strong C-C bond cleavage process, mainly generated small molecules gaseous hydrocarbons. Therefore, we argued that the cyanobacteria, which after 1-month aerobic and 1-month anaerobic decaying, was more suitable for organic fertilizer resource utilization in a pool, then the gas collected for combustion; the cyanobacteria after 3-month aerobic decaying was more suitable for bio-energy. Accordingly, we proposed that monitoring the humification process and to control the formation of harmful ingredients relying on the fluorescence intensity of phycobiliprotein and chlorophyll.

Keywords: Cyanobacteria; decaying; saturated hydrocarbons; aromatic hydrocarbons; Lake Chaohu; control

巢湖流域工业化及城市化的迅速发展在带动经济发展的同时也产生了一系列的问题, 其中环境问题尤为突出[1]。2010年《中国环境状况公告》指出, 湖水水质为劣Ⅴ类, 总体处于轻度富营养化状态, 而湖湖的多环芳烃污染也呈日益加重趋势[2]。富营养化带来的蓝藻处理对策包括物理、化学及生物技术[3], 其中直接打
多环芳烃能参与机体的代谢作用，是目前环境中普遍存在的持久性污染物，具有致癌、致畸、致突变和生物难降解的特性。目前巢湖水体和底泥中都不同程度地受到多环芳烃的污染，而且日趋严重。巢湖蓝藻死亡衰败过程中藻毒素的研究已经非常成熟，但是对其他有害物质如多环芳烃等的报道却鲜有出现。本研究通过实验室模拟巢湖蓝藻的死亡衰败过程，检测其降解过程中代谢产物尤其是多环芳烃的变化特征，探讨其产生原因和机理，以期为巢湖蓝藻的资源化利用提出控制对策。

1 材料与方法

1.1 实验材料

1.1.1 藻样样品 采样地点位于巢湖西半湖塘西河口（31°67′N, 117°34′E），采样时间为2010年蓝藻暴发期间，采样水体pH为8.83，DO为7.42 mg/L，COD_{m}为4.58 mg/L，NH_{3}-N为0.36 mg/L，藻样的含水量为98.6%以上，经镜检98%以上为蓝藻门的微囊藻属（*Microcystis*），常温下用无菌水清洗数遍后待用。

1.1.2 实验菌种 好氧菌：氧化亚铁菌（*Alcaligenes faealis*），硝化细菌（*Nitrosomonas* sp.），硫化细菌（*Thiobacillus thiocharus*）；厌氧菌：反硝化细菌（*Klebsiella* sp.），硫酸盐还原菌（*Acinetobacter calcoaceticus*）。以上菌株均为本实验室分离筛选所得。

1.1.3 培养基 氧化亚铁菌培养基、硝化细菌培养基、反硝化细菌培养基参见文献[11]，好氧硫化菌培养基、硫酸盐还原菌培养基参见文献[12-13]。

1.2 实验方法

1.2.1 实验室模拟蓝藻死亡衰败过程 实验装置选用圆柱形反应器（图1），有效容积为40 L，加入处理后的新鲜蓝藻30 L（在无菌室，新鲜蓝藻用8层纱布将污水干，并用无菌水清洗3遍后滤干备用）。气体和菌剂由反应器顶部加入，反应器配有搅拌装置，底部设置取样口。将蓝藻反应装置置于30±2℃恒温培养箱中，不加任何营养元素，避光处理。实验中蓝藻先进行前期预处理，然后分别按好氧工艺、厌氧工艺、兼性工艺处理，各工艺不同阶段按表1加入氧化亚铁菌、硝化细菌、好氧硫化菌、反硝化细菌及硫酸盐还原菌等，模拟蓝藻的衰亡腐殖化过程。

1.2.2 样品处理 按照工艺流程的进程，在不同工艺阶段取新鲜蓝藻样品6份（表1），冷冻干燥保存，以便后续研究。蓝藻经粉碎过筛至<80目，经氯仿，甲醇（体积比3:1）超声抽提（20 min×3）得类脂物。类脂物经石油醚沉淀出沥青质，类脂物再经硅胶；氧化铝（体积比3:1）柱色层分离，以正构烷烃做冲洗剂得非极性馏分（饱和烃），二氯甲烷做冲洗剂得得极性馏分（非烃）。

1.2.3 测定指标及方法 样品中饱和烃的测定采用GB/T 18606-2001 [14]，烃类化合物的测定主要采用Q/SW WX0008-2006 [15]。气相的测定采用气相色谱外标法，气相色谱仪为GC-4000（皖仪科技有限公司）。标准物为47.1×10^{-6} CH_{4}，1.99×10^{-6} H_{2}，25×10^{-6} CO_{2}，4.1×10^{-6} H_{2}S，余下的为N_{2}。色谱柱：TDX-01 碳分子筛（60～80 目），长1 m，内径5 mm 的不锈钢柱；5A 分子筛（60～80 目），长2 m，内径3 mm 的不锈钢柱。柱温50℃，气化室温度100℃，检测器温度100℃。载气H_{2}，流速50 ml/min。检测器：TCD，桥流110 mA。进样量：1 ml。
表 1 藻类残体处理过程中典型的霉菌成分及对野外沼泽环境的影响

<table>
<thead>
<tr>
<th>处理工艺</th>
<th>工艺流程</th>
<th>样品名称</th>
<th>处理过程</th>
</tr>
</thead>
<tbody>
<tr>
<td>前期</td>
<td>新鲜藻类</td>
<td>新鲜藻类</td>
<td>用无菌水清洗数遍</td>
</tr>
<tr>
<td>预处理</td>
<td>水解 7 d</td>
<td>水解藻类</td>
<td>将藻类放入反应器中，自然水解，去水，搅拌</td>
</tr>
<tr>
<td>好氧工艺</td>
<td>好氧降解 1 个月</td>
<td>好氧 1 月藻类</td>
<td>水解 7 d 后的藻类在第 1 ~ 10 d 加入氧化细菌，第 11 ~ 20 d 加消化学细菌，第 21 ~ 30 d 加硫化细菌，好氧，搅拌（每 3 d 补加细菌）</td>
</tr>
<tr>
<td>好氧降解 3 个月</td>
<td>好氧 3 月藻类</td>
<td>好氧 1 个月的藻类继续循环好氧降解 3 个月</td>
<td></td>
</tr>
<tr>
<td>厌氧工艺</td>
<td>厌氧降解 1 个月</td>
<td>厌氧藻类</td>
<td>前期预处理的藻类，充氧气，第 1 ~ 15 d 加反硝化细菌，第 16 ~ 30 d 加硫酸盐还原菌，封口（每 5 d 补加细菌）</td>
</tr>
<tr>
<td>兼性工艺</td>
<td>好氧、厌氧各降解 1 个月</td>
<td>兼性藻类</td>
<td>好氧 1 个月的藻类立即进行厌氧降解 1 个月</td>
</tr>
</tbody>
</table>

2. 结果和分析

2.1 有机元素变化

藻类在死亡衰败过程中，其多糖、蛋白质、脂类等依次被微生物分解[13]。藻类有机质元素 C, H, O 含量变化幅度均在 2% 左右（表 2），可能因为 C, H, O 是脂类的主要成分，而且较难分解。

厌氧藻类经厌氧降解 1 个月后，元素 N, S 随降低很少，与新鲜藻类下降 40%。可能因为蛋白质中的 N, S 经过反硝化细菌和硫酸盐还原菌的降解生成 NH₃, N₂, H₂S 等气体[14,15,17]，元素 S 变化幅度较小，主要原因是 H₂S 极易溶于水，可能和溶液中的其它化合物发生反应，很难从体系中溢出。

工艺流程进入厌氧阶段后，用饱和食盐水收集产生的气体，每隔 10 d，用量筒量取 1 ml 气体进行气体色谱仪测量。NH₃ 和 H₂S 极易溶于水，气体难收集。元素 C 在厌氧过程中可能形成 CH₄, CO₂ 等，N₂ 含量在 80% 以上为主要产物（表 3），说明蛋白质易被降解。

表 2 不同衰败程度藻类样品的有机元素变化

<table>
<thead>
<tr>
<th>样品</th>
<th>W(C)/%</th>
<th>W(H)/%</th>
<th>W(O)/%</th>
<th>W(N)/%</th>
<th>W(S)/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>新鲜藻类</td>
<td>44.42</td>
<td>7.18</td>
<td>33.79</td>
<td>9.34</td>
<td>0.49</td>
</tr>
<tr>
<td>水解藻类</td>
<td>44.39</td>
<td>9.11</td>
<td>34.15</td>
<td>6.66</td>
<td>0.38</td>
</tr>
<tr>
<td>好氧 1 月藻类</td>
<td>43.91</td>
<td>9.18</td>
<td>33.58</td>
<td>6.05</td>
<td>0.34</td>
</tr>
<tr>
<td>好氧 3 月藻类</td>
<td>43.58</td>
<td>9.61</td>
<td>33.94</td>
<td>5.42</td>
<td>0.33</td>
</tr>
<tr>
<td>厌氧藻类</td>
<td>42.68</td>
<td>9.96</td>
<td>33.99</td>
<td>5.59</td>
<td>0.31</td>
</tr>
<tr>
<td>兼性藻类</td>
<td>41.01</td>
<td>7.01</td>
<td>37.19</td>
<td>6.42</td>
<td>0.59</td>
</tr>
</tbody>
</table>

表 3 藻类厌氧降解过程中气体含量变化

<table>
<thead>
<tr>
<th>气体成分</th>
<th>厌氧 20 d</th>
<th>厌氧 30 d</th>
<th>厌氧 40 d</th>
<th>厌氧 50 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂</td>
<td>80.68%</td>
<td>97.22%</td>
<td>97.69%</td>
<td>96.48%</td>
</tr>
<tr>
<td>CH₄ + CO₂</td>
<td>0.1273%</td>
<td>0.1981%</td>
<td>0.2018%</td>
<td>0.2138%</td>
</tr>
</tbody>
</table>

2.2 藻类中有机物浓度和组分含量的变化

藻类在死亡衰败过程中，有机物浓度和组分含量变化。藻类经水解作用后，有氯仿沥青 A 含量明显增加（表 4），说明水解作用将细胞中的大量多糖、蛋白质等释放出来[18]。藻类经好氧 1 个月处理后所含可溶有机质含量最高，但饱和烃含量却降低，说明好氧细菌最先利用藻类的多糖、蛋白质和核酸等，而且这些生长成分是表面粘附水生物的来源[19]。随着氧气时间增加到 3 个月藻类有机质急剧下降，下降了 58.32%，由于好氧时间过长，细菌的生命活动消耗了部分有机质。厌氧藻类可能因为厌氧条件下厌氧细菌代谢较缓慢，可
溶有机物消耗较慢。

2.2.1 亲氧烃的特征

好氧3个月的蓝藻其饱和烃达到最高值24.07%(表4)，净含量为13.4 mg/g(DW)。好氧3个月的蓝藻和其他藻类如小球藻、聚球藻等[18-20](未处理的藻细胞和细菌降解的藻细胞)相比，饱和烃含量最高。与新鲜蓝藻相比非烃和沥青质含量下降了60.66%和42.98%，饱和烃含量却是其5倍左右，可能是好氧菌将部分非烃和沥青质转化成饱和烃，同时消耗有机质维持生命代谢。而厌氧蓝藻其饱和烃含量较高，与水解蓝藻和好氧1月蓝藻相当，说明较弱好氧时间能增加其饱和烃含量。

2.2.2 芳烃的特征

新鲜蓝藻的芳烃含量为1.11 mg/g(DW)，兼性蓝藻经过好氧、厌氧各1月的死亡衰败，其芳烃总含量最低为1.09 mg/g(DW)。而厌氧蓝藻其芳烃含量反而有所增加，净含量为5.67 mg/g(DW)，说明好氧作用能降解芳烃的含量，厌氧可能有利于饱和烃等发生复杂反应生成芳烃物质。

不同死亡衰败阶段的蓝藻其芳烃占有机质的含量约在2%～6%之间（表4），净含量在1.09～5.67 mg/g(DW)之间，由于蓝藻含水量为98.6%，因此蓝藻生物体中芳烃含量约10.9～56.7 μg/g(DW)，Long等[20]研究了多环芳烃的风险标准生物影响低值(4022 ng/g)和生物影响高值(44792 ng/g)，因此无论是新鲜蓝藻还是经微生物降解的蓝藻，都存在较为高的生态风险。为进一步研究蓝藻死亡衰败过程中多环芳烃的危害，选取新鲜蓝藻和兼性蓝藻测定其多环芳烃的种类及含量。兼性蓝藻其多环芳烃在种类和含量上都比新鲜蓝藻要少很多。新鲜蓝藻中具有烷基取代的多环芳烃种类很多，如甲基苯、二甲基苯、三甲基苯总含量也较多。还有些含硫含氧的多环芳烃，如二苯并噻吩、甲基二苯并噻吩（表5）。未取代的多环芳烃中有较多属于EPA(美国国家环境保护局)提出的优先控制污染物，如苯、苯环(表5)。在兼性蓝藻中多环芳烃的种类和含量明显减少，苯、苯环等优先控制污染物在检测线以下，甲基二苯并噻吩也未检出。多环芳烃具有强疏水性，易被水中的颗粒物吸附，加上海藻表层具有粘性多糖，因此更易被海藻吸附。多环芳烃不仅能发生表面吸附，而且由于其脂溶性能进入海藻内部，被表层

| 表4 蓝藻死亡衰败过程中有机组份含量变化
| Tab. 4 The contents and compositions of organics in cyanobacteria decaying process
<table>
<thead>
<tr>
<th>样品</th>
<th>沥青 A/%</th>
<th>饱和烃/%</th>
<th>芳烃/%</th>
<th>非烃/%</th>
<th>沥青质/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>新鲜蓝藻</td>
<td>1.96</td>
<td>4.87</td>
<td>5.64</td>
<td>47.69</td>
<td>28.97</td>
</tr>
<tr>
<td>水解蓝藻</td>
<td>12.00</td>
<td>2.34</td>
<td>5.15</td>
<td>38.07</td>
<td>41.03</td>
</tr>
<tr>
<td>好氧1月蓝藻</td>
<td>13.34</td>
<td>2.40</td>
<td>2.26</td>
<td>59.27</td>
<td>22.62</td>
</tr>
<tr>
<td>好氧3月蓝藻</td>
<td>5.56</td>
<td>24.07</td>
<td>2.60</td>
<td>18.76</td>
<td>16.52</td>
</tr>
<tr>
<td>厌氧蓝藻</td>
<td>11.98</td>
<td>2.43</td>
<td>4.73</td>
<td>40.03</td>
<td>39.39</td>
</tr>
<tr>
<td>兼性蓝藻</td>
<td>3.07</td>
<td>8.14</td>
<td>3.55</td>
<td>26.86</td>
<td>34.08</td>
</tr>
</tbody>
</table>

| 表5 新鲜蓝藻与兼性蓝藻的多环芳烃组成及含量
| Tab. 5 The compositions and contents of the PAHs in fresh cyanobacteria and after 1-month aerobic and 1-month anaerobic treatment cyanobacteria
<table>
<thead>
<tr>
<th>多环芳烃组成</th>
<th>含量/(μg/g(DW))</th>
<th>多环芳烃组成</th>
<th>含量/(μg/g(DW))</th>
</tr>
</thead>
<tbody>
<tr>
<td>二苯并噻吩</td>
<td>42.75</td>
<td>二苯并噻吩</td>
<td>50.84</td>
</tr>
<tr>
<td>1-苯基菲</td>
<td>5.14</td>
<td>1-苯基菲</td>
<td>2.85</td>
</tr>
<tr>
<td>2-苯基菲</td>
<td>6.96</td>
<td>2-苯基菲</td>
<td>4.00</td>
</tr>
<tr>
<td>9-苯基菲</td>
<td>4.19</td>
<td>9-苯基菲</td>
<td>2.77</td>
</tr>
<tr>
<td>1-苯基菲</td>
<td>3.44</td>
<td>1-苯基菲</td>
<td>2.51</td>
</tr>
<tr>
<td>3,5-二苯基菲</td>
<td>1.74</td>
<td>3,5-二苯基菲</td>
<td>1.50</td>
</tr>
<tr>
<td>2,7-二苯基菲</td>
<td>1.55</td>
<td>2,7-二苯基菲</td>
<td>1.43</td>
</tr>
<tr>
<td>2,10-二苯基菲</td>
<td>4.44</td>
<td>2,10-二苯基菲</td>
<td>3.99</td>
</tr>
<tr>
<td>2,5-二苯基菲</td>
<td>2.33</td>
<td>2,5-二苯基菲</td>
<td>2.03</td>
</tr>
<tr>
<td>1,7-二苯基菲</td>
<td>2.06</td>
<td>1,7-二苯基菲</td>
<td>2.01</td>
</tr>
<tr>
<td>2,3-二苯基菲</td>
<td>1.09</td>
<td>2,3-二苯基菲</td>
<td>0.83</td>
</tr>
<tr>
<td>1,9-二苯基菲</td>
<td>0.85</td>
<td>1,9-二苯基菲</td>
<td>0.72</td>
</tr>
<tr>
<td>1,8-二苯基菲</td>
<td>0.50</td>
<td>1,8-二苯基菲</td>
<td>0.47</td>
</tr>
<tr>
<td>三苯基菲</td>
<td>10.79</td>
<td>三苯基菲</td>
<td>9.38</td>
</tr>
<tr>
<td>苯</td>
<td>33.54</td>
<td>苯</td>
<td>0.30</td>
</tr>
<tr>
<td>萘</td>
<td>1.93</td>
<td>萘</td>
<td>0.30</td>
</tr>
<tr>
<td>2-甲基苯并噻吩</td>
<td>1.50</td>
<td>2-甲基苯并噻吩</td>
<td>1.50</td>
</tr>
<tr>
<td>3-甲基苯并噻吩</td>
<td>128.64</td>
<td>3-甲基苯并噻吩</td>
<td>85.63</td>
</tr>
</tbody>
</table>
吸附的多环芳烃具有一定的交换性和可浸出性，进入蓝藻有机体中的大多是不可逆吸附，在蓝藻暴发、死亡、衰败下沉入沉积物的过程中，存在着多环芳烃的吸附与释放。这也是蓝藻中检测出多环芳烃的主要原因。[21-22]

2.2.3 非烃和沥青质的特征
非烃是一类含氧、硫、氮等杂原子的有机化合物，是沉积物中有机质向烃类化合物演化过程的中间产物，其中有些毒性化合物进入沉积物和土壤后可能导致长期污染，有一定的环境危害和生态风险[23]，其成因复杂、极性较大、难分离，这也是目前非烃类化合物污染问题还未得到足够重视的主要原因[24-25]。在沉积物中有机物质降解的蓝藻有机质组分中，非烃和沥青质皆为主要成分，占有机质含量的30%～50%。新鲜蓝藻有机质中非烃＞沥青质＞芳烃＞饱和烃，非烃和沥青质含量最低的是经过好氧作用3个月的蓝藻，其有机质中饱和烃＞沥青质＞非烃＞芳烃，说明好氧作用能将非烃和沥青质转化为饱和烃和烃。

3 讨论
目前，关于湖泊富营养化的局部水体治理，众多研究者分析了生物操纵和非经典生物操纵的应用条件和局限性，认为生物操纵和非经典生物操纵都很难控制所有藻类和磷N、P[26]。因此，直接打捞法一直被视为湖泊富营养化治理的基本措施。由于蓝藻含有藻毒素，不能将打捞的蓝藻直接堆放，而且底部堆积的蓝藻会生成臭味物质及多环芳烃等毒素，污染大气、水体和土壤。本研究发现兼性工艺处理的蓝藻其多环芳烃含量最低，在种类和含量上都比新鲜蓝藻要少很多，且EPA提出的优先控制污染物未检出，厌氧使芳烃含量略有增加。因此对打捞来的蓝藻进行处理时，应建立一个好氧工艺池，添加有效微生物菌剂[27]，后期加盖避免NH₃、H₂S等臭味，有害气体污染环境[9]，蓝藻好氧处理和厌氧处理的死亡衰败过程中，有机元素C形成CH₄等小分子气态烃，是沼气的主要成分，能变废为宝，同时防止NH₃、H₂S等臭味，有害气体溢出，处理后的发酵液富含腐殖质也可以用于农田用作肥料或作为生物能源的初级材料。由于蓝藻孢子含量随好氧作用时间的增加而提高，好氧3个月蓝藻其饱和烃含量达到最高。因此，在用蓝藻产生新型的生物能源时，应该着重控制好氧化阶段的时间。

蓝藻中存在大量蛋白质、叶绿素、脂肪，藻胆蛋白是红藻、蓝藻和一些藻甲特有的光合作用天然色素，能制成荧光试剂[28]，分为藻蓝蛋白、偏藻蓝蛋白和藻红蛋白[29]，目前有研究表明，藻细胞内的叶绿素荧光信号中包含光合作用和藻生长衰亡的信息，因此叶绿素荧光技术可以作为研究和探测藻类生长衰亡进程的一种快速、灵敏和无损伤的理想方法[30]。孟泽清等研究指出，藻藻降解过程中其细胞形态发生了明显的变化，胞内荧光蛋白的含量随着时间的增加而减少，荧光强度逐渐减弱[11]。因此，通过检验蓝藻细胞内的荧光蛋白含量来监测其衰败进程，并以此来控制堆肥或发酵藻类中有害成分的形成也是一个简便、可行的方法。

4 参考文献
[1] 殷福才，张之源。巢湖富营养化研究进展。湖泊科学，2003，15（4）：377-384。
[3] 王振华，陈涛。蓝藻水华的危害及治理动态。水产学杂志，2004，17（1）：90-94。
[5] 孙小静，秦开保，朱正伟。蓝藻死亡分解过程中胶体态磷、氮、有机碳的释放。中国环境科学，2007，27（3）：341-345。
[6] Hargreaves JC，Adl MS，Warman PR。A review of the use of composted municipal solid waste in agriculture。Agriculture Ecosystems & Environment，2008，123（1/2/3）：1-14。
[7] 李国学，李玉春，李亚富。固体废物堆肥化及堆肥添加剂研究进展。农业环境科学学报，2003，22（2）：252-256。
[8] 王焕娟。蓝藻快速好氧堆肥的研究[学位论文]。无锡：江南大学，2009。
[9] 胡峥。蓝藻厌氧发酵产沼气的研究[学位论文]。无锡：江南大学，2009。
[10] 王金生，邹志成，韩朝霞。多环芳烃分析技术。南京：南京大学出版社，1988。
[18] 吴庆余，章 冰，宋一涛等. 水解和细菌降解作用对小球藻热模拟烧焦及生物标志物的影响. 科学通报，1998，43(1)：76-80.