TAN Xichang, LI Yuefei, LI Xinhui, LI Jie & WANG Chao

(Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, P. R. China)

Abstract: As the eastern tributary of the Pearl River in Guangdong Province, southern China, East River is a major source of water supply for Hong Kong and Shenzhen. Besides their important role in nutrient cycling and transformation in the river ecosystem, fish are also considered as good indicators of aquatic ecosystem health. For the purposes of assessment and management of East River it is necessary to look into the status of fish spawning ground, especially with cascade dams’ duress. From March to October, 2010, we studied taxonomic composition and daily variation of fish larvae abundance from a survey in the Guzhu section of East River over a period of 8 months, and collected 26 species (or genera). The fish larval samples were numerically dominated by four species, Gobies (Gobiidae) 63.0%, Barbel Chub (Squaliobarbus curriculus) 16.8%, Tilapia (Tilapia mossambica) 9.7%, and Mandarin (Siniperca knerii) 2.0%. These four species accounted for 91.5% of total numbers. During the sampling period, the total fish larvae abundance was estimated as 1.14 billion. When compared with historical records from the 1950s and the currently condition of fish larvae in the West River, there are obvious degradation in the fish larvae community in East River, which means no migratory species and irregular response to the hydrological variation. It comes to the conclusion that the cascade dams blocked the fish migration and caused the disappearing of some spawning grounds. Our results clearly show that Tilapia larvae outbreak in the East River, which is very dangerous to the ecology safety. We also conclude that construction of cascade dams makes the East River more habitable for Tilapia. For the purpose of protecting ecosystem, we recommend that more Silver Carp (Hypophthalmichthys molitrix), Bighead Carp (Aristichthys nobilis) and Black Guangdong Bream (Megalobrama terminalis) be released to the East River and possibly constructions of fish passage be considered.

Keywords: Fish spawning ground; East River; cascade dams; duress; Guzhu section
东江是珠江流域三大河流之一，干流全长562 km, 年平均水资源总量为331.1×10^6 m^3, 是香港地区以及珠江三角洲东部地区重要水源。根据1982–1983年调查结果，东江有鱼类131种，占珠江水系鱼类385种的34%[1]。历史上东江盛产游游性、半游游性鱼类如鲫鱼、花鳗、七丝鳗等，四大家鱼等，每年4–6月，鲫鱼、花鳗溯河越游至新丰江形成鱼汛。1960s以后，东江下游8个河口中有5个陆续修建了防咸潮闸门，干流和支流也兴建了新丰江水库等水利工程，鲫鱼、花鳗的数量大大减少。2003年东江干流水电梯级的大规模开发建设，树木倒伏江段完成建设的水电站有10个，1个在建（图1）。近年来，东江的鱼类资源状况已呈相对稳定，各个水段的鱼类群落结构均未发生明显变化。调查结果表明，中下游则达98种，其中明显变化是游游性种类数量减少，如三线舌鳎、弓斑东方鲀、鳗鲡、花鳗、七丝鳗等[2-4]。

东江的鱼类产卵场状况历史背景资料甚为缺少，过去大体情况是，河源龙川江段曾分布有四大家鱼产卵场[16]，1950s东江四大家鱼鱼苗年捕捞量达2×10^5尾[1]。目前随着水坝在东江的逐渐增多及其它环境胁迫的日益加剧，迫切需要了解东江鱼类产卵场的现状，以便深入分析东江江段鱼类群落变动趋势及采取必要的保护措施，维护东江流域生态系统健康和水资源的安全。因此为了解东江鱼类产卵现状，2010年3–10月，在古竹江段设置了鱼卵、鱼苗监测点，进行连续采样，并在样品整理、鉴定的基础上分析了鱼类产卵繁殖与水文因素关联性，以期为东江的鱼类资源保护、河流管理、生态修复提供基础性数据。

1 材料与方法

1.1 采样网具

采样网具为藻网，网口为长方形（1 m×1.5 m），网长4 m，由前向后逐渐变细，与集鱼箱（0.8 m×0.4 m×0.4 m）连接，收集鱼苗。集鱼箱以密封的PVC塑料管浮于水面，网衣由网目为0.776 mm的筛绢制成。

1.2 采样地点与时间

采样地点位于古竹镇东江大桥上1 km处，距离河源市区下约40 km，距离紫金县临江镇水坝约14 km，下游距离惠州剑潭水利枢纽尾水区约66 km（图1）。采样日期为2010年3月18日至10月31日，采样时间段为19:00–21:00，持续时间2 h。

样品用5%福尔马林液固定后回运实验室进行镜检。网口流速测定采用重庆市水文仪器厂生产的旋杯式流速仪。

1.3 样品鉴定及数据分析

在解剖镜下根据体形、鳍条数、鳍条形态、鳍条（鳍）形态、眼相对大小和位置等特征进行种类识别。鉴定主要依据曹文宜等[17]、易伯儒等[18]及梁秩振[19]对鱼类的早期发育特征的描述。

鱼苗径流量计算公式为：

\[M = [m/(s\cdot v)] \cdot Q \]

式中，\(M \) 为鱼苗总数（ind.），\(Q \) 为采集点断面的江水流量（m^3/s），\(v \) 为流经网口的江水流速（m/s），\(m \) 为采集到的鱼苗数量（ind.），\(s \) 为网口面积（m^2），总鱼苗径流量用单位时间鱼苗径流量换算得出。

通过典型对应分析（Canonical Correspondence Analysis, CCA）[20]分析古竹江段鱼卵（卵）总量、鱼卵量及主要优势种类数量与水文环境因子径流量、气温、水温、气压、降雨量的关系。水温通过HOBO水温记录仪每天自动测定保存，古竹江面断面径流量数据来自全国水文信息网（http://xxfb. hydroinfo. gov. cn）及广东省水文
息网(http://www.gdsw.gov.cn)，气象数据来自气象在线网(www.qxzx.cn)。

图 1 东江水系主要水坝的分布以及鱼苗采样点位置
Fig. 1 Distribution of dams and fish larvae sampling site in the East River

2 结果与分析

2.1 鱼苗种类组成

根据东江古竹江段3-10月份采集样品，共鉴定出鱼苗种类26种(种或属)(表1)。数量上主要优势种类为ohon类63.0%、赤眼鳟16.8%、尼罗罗非鱼9.7%、大眼鱥2.0%、高体鳑鲏1.2%、䱛1.7%、鲱类1.2%、红鲌类1.1%、银鲴1.0%、偏带鲿0.8%等；其它一些种类为鲶、鲫、白肌银鲫、中华花鳅、泥鳅、福建纹胸𬶐、食蚊鱼等。其它的5~7种待进一步鉴定，但这些种类数量比例较小。

2.2 鱼类产卵规模状况

根据3-10月份样品统计，古竹江段鱼(卵)占采集到的苗卵数量的71%；古竹江段鱼卵的发育期主要为囊胚晚期与尾芽期，分别占35%和65%，距离产卵受精时间为8 h及20 h。水流流速以0.75 m/s估算，该时期古竹江段的鱼卵主要来源于上游21~54 km的河源江段，35%的鱼卵来源于临江坝与木京坝间江段，65%的鱼卵来源于木京坝与黄田坝之间江段。3月下旬至10月底，古竹江段鱼苗(卵)径流量初步估算为11.4×10^7尾(颗)，鱼类主要繁殖期在4-9月(图2a)。

从4月份开始，古竹江段有多次涨水，但7-8月份几乎没有明显的洪峰出现(图2b)，相应该时期也没有较大规模的鱼类产卵繁殖活动。
表 1 东江古竹江段已鉴别鱼苗种类
Tab. 1 Species of ichthyoplankton in Guzhu section of the East River

<table>
<thead>
<tr>
<th>目</th>
<th>科</th>
<th>种类</th>
</tr>
</thead>
<tbody>
<tr>
<td>鲑形目</td>
<td>Salmoniformes</td>
<td>银鱼科 Salangidae 白肌银鱼 Leucosoma chinensis Osbeck</td>
</tr>
<tr>
<td>鲑形目</td>
<td>Cypriniformes</td>
<td>鲤科 Cyprinidae 赤眼鳟 Squaliobarus curculius Richardson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>红鲌属 Erythroculter Berg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>鳜 Hemiculter leuciscus Basilewsky</td>
</tr>
<tr>
<td></td>
<td></td>
<td>鲫属 Pseudolabuca Bleeker</td>
</tr>
<tr>
<td></td>
<td></td>
<td>华称 Xenocypris Günther</td>
</tr>
<tr>
<td></td>
<td></td>
<td>鲱 Carphina molitorea Cuvier et Valenciennes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>高体鲤 Rhodeus oscellatus Kner</td>
</tr>
<tr>
<td></td>
<td></td>
<td>银鲫 Squalidus cephalus Linnaeus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>四须盘𬶋 Discogobio tetrabarbus Lin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>鲤 Cyprinus carpio Linnaeus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>鲤科 Cobitidae 中华花鳉 Gobitis sinensis Sauvage et Duby</td>
</tr>
<tr>
<td></td>
<td></td>
<td>美丽小条鳅 Micromenacheilus pulcher Nichols et Pope</td>
</tr>
<tr>
<td></td>
<td></td>
<td>泥鳅 Misgurnus anguillicaudatus Cantor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>花斑副沙鳅 Parabotia fasciata Duby</td>
</tr>
<tr>
<td>鲂形目</td>
<td>Siluriform</td>
<td>鲙科 Siluridae 鲙 Silurus asotus Linnaeus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>鲉科 Bagridae 纵带𬶐 Leiocrinus argentinivittatus Regan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>鳢科 Sisoridae 福建纹胸𬶐 Glyptothorax fokiensis Rendahl</td>
</tr>
<tr>
<td>鳚形目</td>
<td>Cyprinodontiformes</td>
<td>食蚊鱼科 Pocciliidae 食蚊鱼 Gambasia affinis Baird et Giraud</td>
</tr>
<tr>
<td>鲈形目</td>
<td>Perciformes</td>
<td>鱧科 Serranidae 大眼鰤 Siniperca kneri Garman</td>
</tr>
<tr>
<td></td>
<td></td>
<td>丽鱼科 Gichlidae 尼罗罗非鱼 Tilapia nilotica Linnaeus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>鳢鱼科 Gobiidae 鳢 Rhinogobius</td>
</tr>
<tr>
<td></td>
<td></td>
<td>塘鳢科 Eleotridae 塘鳢 Eleotris</td>
</tr>
<tr>
<td></td>
<td></td>
<td>鳚科 Channidae 大刺 سبحان Mastacembelus armatus Lacépède</td>
</tr>
</tbody>
</table>

图 2 古竹江段鱼苗（卵）径流量（a）和径流量（b）日变化（2010 年 3－10 月）
Fig. 2 Dynamic of total ichthyoplankton amount (a) and discharge (b) in the Guzhu section of the East River from March to October, 2010
2.3 尼罗罗非鱼自然繁殖状况

在东江古竹江段，尼罗罗非鱼苗主要出现在7—10月，峰值出现在10月1—6日（图3）。
尼罗罗非鱼在鱼苗中的比例约9.7%，在繁殖高峰期，单位网次采集量最高达880尾，数量比例达85%，呈现爆发性增长。2010年5—10月，在鱼苗样品中，罗非仔鱼鱼苗共计2086尾，体长范围8.27~13.40mm，均值9.40mm；
采集到的罗非鱼苗形态发育一般在鳍条形成期之后，但10月5~6日发育时序主要有卵
（11.8%），卵黄未吸尽（67.5%），卵黄吸尽（20.7%）。参照易伯鲁等[18]对鱼苗径流量的
计算方法，初步估算2010年3~10月，在东江古竹江段罗非鱼苗径流量达2294×10^4尾。

2.4 鱼类繁殖与水文因子关联性分析

通过CCA分析古竹江段鱼卵（卵）总量、鱼卵量及主要优势种类数量与水文环境因子
径流量、水位、水温、气压、降水量关系。CCA二维排序图结果表明，总体上鱼类的产卵繁殖与
径流量、水位变动有较强关联性，但不同的鱼类
产卵繁殖对水文环境因子的生态需求存在差异性，其中鲫鲤鱼类、鲢与水温关联性明显，而赤
眼鳟、红鲌属鱼类对温及径流量生态需求则不
大（图4）。不同水文生态因子与CCA排序轴
关系系数见表2。

3 讨论

3.1 鱼类产卵现状比较分析

与东江历史记录及西江目前鱼类繁殖状况相
比，东江鱼类产卵场功能严重退化。历史上，东江四大家鱼鱼苗年捕捞量达2.0×10^8尾[1]，
因为人工繁殖的鱼苗仅在河流中很小部分，
总鱼苗径流量每年可能高达上千亿尾；而目前
东江古竹江段主要繁殖期鱼苗径流量仅11.4
×10^4尾，相比之下鱼类产卵量极度下降，鱼类
资源状况极度衰退。

尽管鱼苗种类上有26种，但其优势种为鲫
鲤类，赤眼鳟、尼罗罗非鱼、鲢等，缺失涧游（半
涧游）的种类，如七星鲜、青鱼、草鱼、鲢、鳐等，
说明梯级水坝阻隔了鱼类的涧游通道，导致其产卵场消失，鱼类资源严重衰退，这与东江近年的鱼类捕捞状
竹江段没有采集到四大家鱼的鱼苗，说明目前东江中上游家鱼产卵场基本上已经消失；另外在古竹江段也
没有采集到广东魮（Megalobrama terminalis）的鱼苗，呈现出与西江江段在鱼类早期资源种类结构上的明显
差异。
与西江肇庆江段监测分析结果\[1\]相比，东江古竹江段鱼类产卵繁殖与水文生态因子的响应程度较低，二维排序水温与径流量向量角度几乎垂直，而在西江肇庆江段的分析中，水温与径流量向量接近重叠，鱼类产卵繁殖与水文生态更为关联，东江古竹江段上游分布有新丰江以以及枫树坝 2 个大型水库，调节库容分别为 64.9×10^8、12.5×10^8 m³，相对多年平均总径流量为 238×10^8 m³的东江来说，具有强大的调节能力；而西江肇庆江段的鱼苗来源主要在松洲坝水利枢纽以上的浔江、黔江江段，产卵场位置离上游最近水坝的距离超过 100 km，肇庆江段采样点离洲坝水利枢纽 200 km。尽管西江江段水坝对水文节律有影响，但远比东江江段的小，这说明东江江段鱼类对水文生态响应紊乱，群落结构已经失衡。

3.2 梯级水坝是否导致外来种的暴发性增长

尼罗罗非鱼作为东江的优良品种，带来了良好的经济价值，但其毕竟是外来物种，对地方品种及环境存在生态风险。本文结果显示尼罗罗非鱼在东江古竹江段有暴发性繁殖现象，尽管其繁殖高峰出现在 10 月份的原因尚不明，但从数量比例及生物量上综合考虑，尼罗罗非鱼鱼苗是东江鱼苗的优势种之一，东江已经面临外来种的严峻威胁。由于罗非鱼生长快、性成熟早、有护幼行为、适应性强，其逃逸到自然水体后，有严重生态影响，如卢旺达共和国 Luvungi 湖 1935 年引进尼罗罗非鱼，到 1952 年发现当地的 3 个鲤科种类基本消失\[2\]。

本文关注的是东江梯级水坝的修建是否导致罗非鱼的过度繁殖。目前东江古竹江段溪游性鱼类（如青、草、鲢、鳙等）的鱼苗缺失，其主要原因可能是梯级水坝阻隔了鱼类的洄游，不能形成一定规模的繁殖群体。这样在生态位上腾出了空间，为其它鱼类入侵提供了机会；另外，水坝提高了库区水位，为罗非鱼的越冬提供了场所。因此可以认为，东江梯级水坝的修建是导致罗非鱼成功入侵的原因之一。但罗非鱼在东江江段暴发性繁殖可能与水文节律及其性腺发育规律有关，建议进行深入研究，以便从其机理着手采取有效措施控制罗非鱼种群过度扩张。

3.3 东江江段鱼类增殖放流品种建议

根据目前东江鱼类产卵状况监测，原有的四大家鱼产卵场消失，由于水坝的阻隔，恢复四大家鱼（青、草、鲢、鳙）产卵场的可能性很小，因为根据四大家鱼产卵繁殖的条件需求，受精卵需要数百公里的漂游才能孵化出膜完成发育。因此建议放流四大家鱼，特别是鲢、鳙更应该作为东江鱼类人工放流的主要品种之一，因为鲢、鳙为滤食性，可以大量滤食浮游生物，对河流营养物质及能量的控制及输出有重要作用。鲢、鳙的下行效应在武汉东湖水华控制以及云南滇池蓝藻治理上都有成功应用的例证。

广东青目前是珠江中下游优势种类型\[22\-23\]，充分说明了其具有良好的生态适应性，但在东江古竹江段尚未采集到其鱼苗。广东青鱼苗个体较为强壮、杂食性，生态位较宽，繁殖对生态水文需求不苛刻，种群恢复起来难度相对较小，因此广东青也建议作为东江鱼类人工放流的主要品种之一。

3.4 鱼类洄游通道贯通必要性

本次调查结果表明原有的东川江段四大家鱼产卵场已经消失，目前在东江古竹以上江段也没有三角鲑产卵场的分布，说明了梯级水坝严重影响溪游性鱼类正常的生活史，东江下游江段及珠江三洲洲栖息、育肥的成熟亲鱼难以上溯。已经修建的水坝都没有配套的过鱼通道，尽管在洪水期，水坝在运行上可能会打开
参考文献