Subfossil chironomid assemblages in sediments of Meiliang Bay, Lake Taihu and the trophic reconstruction

CAO Yanmin¹², ZHANG Enlou¹, SHEN Ji¹, LIU Enfeng¹ & CHEN Xu¹²
(1: State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China)
(2: Graduate School of Chinese Academy of Sciences, Beijing 100049, P. R. China)

Abstract: Based on chironomid analysis for sediment core T0905 from Meiliang Bay, Lake Taihu, response patterns of chironomid assemblages to lake trophic changes were discussed. Results show that chironomid assemblages experienced a notable community shift from predominant *Tanytarsus* to *Chironomus plumosus*-type and *Microchironomus* dominated at around 1970. Before 1970, chironomid assemblages were dominated by *Tanytarsus*, which is an indicator of relatively good water quality and moderate trophic status. Subsequently, the relative abundance of *Tanytarsus* decreased along with the increase of eutrophic indicators such as *Chironomus plumosus*-type and Propilocerus akamasi-type. Especially from 1990, the abundance of *Microchironomus tabarai*-type had a sharp increase, denoting that Meiling Bay has already become eutrophic level from meso-eutrophication.

Keywords: Lake Taihu; Meiliang Bay; chironomids; sediment record; eutrophication
市化进程使得太湖水环境污染日益严重，富营养化问题愈演愈烈，太湖水体生态系统遭到严重破坏。1980s
开始浮游生物多样性减少，90 年代后每当夏季都出现蓝藻暴发。尤其是毗邻无锡市的梅梁湾湖区，富营养化
问题非常突出。由于缺乏长期的监测资料，该湖区历史时期的湖泊营养演化过程尚不清楚。尽管近年来许
多古湖学研究工作已经开展，利用生物指标对该湖营养演化历史的研究仅限于对硅藻和枝角类微化石的探
讨。本文从湖泊古生态学角度出发，通过对沉积钻孔的虫体亚化石组合进行分析，探讨 1940 年以来
梅梁湾湖区的蚊亚种组合特征及其指示的湖泊营养盐演化过程。

1 材料与研究方法

1.1 样品采集

图 1 太湖及采样点位置

Fig. 1 Lake Taihu and sampling sites

每个沉积样品中蚊亚种亚化石统计数至少达 50 个采样。利用 TILIA 2.0 b.5, TILIAGRAPH 2.0 b.5 软件完成
蚊亚种亚石百分比图谱的绘制，并在 CONISS 聚类分析的基础上进行蚊亚种亚种的划分。

SCP 处理方法依据文献[25]进行。取样 0.1-0.2g，置于 12ml 聚丙烯管中，依次加入 3ml 硝酸、氢氟
酸、盐酸，分别 80℃水浴 2h，以去除样品中的有机质，硅酸盐和碳酸盐，加入蒸馏水离心取上清液后，将
剩余物制成玻片在 400 倍生物显微镜下鉴定，统计大于 20μm 的 SCP，最后计算沉积物中 SCP 的浓度，记为
单位重量沉积物中 SCP 的颗粒数。以 count/g 来表示。

用于 Cu, Zn 等元素含量分析的样品低温烘干，研磨至 100 目，采用盐酸-硝酸-氢氟酸消化法处理后，利
用美国 LEEMAN LABS PROFILE 型电感耦合等离子体原子发射光谱仪 (ICP-AES) 测定。

1.3 数理统计分析

蚊亚种亚化石组合受多种环境因子的影响，但并非所有的环境指标都能够与蚊亚种亚种建立显著的函
数关系[10, 26]。降维对应分析 (DCA) 用于蚊亚种亚化石数据分析，提取影响蚊亚种亚种分布的主要环境变量，这
是一种间接梯度分析方法，以测试主要坐标轴的潜在环境意义，为主要环境指标的揭示提供依据[27]。选择至少
在两个或两个以上样品中出现，含量至少在 1 个样品中超过 2% 的常见亚种用于 DCA 分析，蚊亚种亚化石含
量用方根变换，对含量极少的亚种进行降权处理，以减少对结果造成的偏差。DCA 数值分析在 CANO-
CO version 4.5 软件中进行[28]。

2 研究结果

2.1 钻孔年代序列

本钻孔采用 SCP 区域性事件定年的方法，并与 Rose 等对太湖梅梁湾 TAI-1L 钻孔 (图 1) 的分析结果[29]
进行对比。煤和石油等化石燃料在 1750℃的高温下燃烧，会产生一些由单质碳所组成的多孔性球状颗粒
(SCP)，它伴随发电工业而产生，随烟尘在大气中扩散，通过干沉降和降水在沉积物中积累下来，因而能很好
地反映区域工业发展历史，记录人类活动对区域环境影响的变化过程。SCP化学性质相对稳定，能在湖泊沉积物中得以良好保存，将区域工业发展记录与SCP含量峰值相结合，可以作为近代沉积物定年很好的指标。

本钻孔21cm以下SCP浓度较低（图2a），而后开始迅速增加。在11cm处出现明显的峰值。21cm以下层段Zn、Cu含量较低（分别为60μg/g，17μg/g左右，图2e，2f），Rose等的研究（图2d，2f）中25cm以下Zn的含量小于60μg/g，而Cu则为15μg/g左右。对T9005与TAI-1L两岩芯的结果发现，SCP，Zn，Cu具有相似的变化规律。两岩芯中的Zn，Cu含量分别在21cm，25cm之后呈增加趋势，同时SCP浓度也分别在约21cm，25cm后迅速上升。据吴艳宏等研究发现，1952年后我国电力工业开始逐年成倍发展，现今华东电网的主力发电厂于1956年在淮南建成[29]，之后江苏省的发电量也开始急速增长。结合TAI-1L的测年结果，可以推断T9005钻孔中21cm处约为1955年。结合T9005沉积柱中SCP出现的明显峰值，与Rose等的结果[29]（图2b）对比可知本钻孔中11cm处约为1990年，由此推算1955到1990年间，梅梁湾湖区平均沉积速率为0.31cm/a，而在1990至1998年间则迅速上升到0.75cm/a。依据1955至1990年及1990年以来的平均沉积速率，大致可以建立岩芯T9005中昆虫组合发生明显变化的各阶段所对应的年代（图3）。

![图2 T9005(a,c,e)与TAI-1L(b,d,f)钻孔中SCP浓度及Zn、Cu元素变化曲线对比](attachment:image1)

Fig. 2 Comparison of SCP，Zn and Cu between the two cores; T9005(a,c,e) and TAI-1L(b,d,f)

![图3 梅梁湾钻孔 T9005 主要昆虫属种组合图谱](attachment:image2)

Fig. 3 Diagram of main chironomid taxa in core T9005
2.2 摇蚊亚化石组合

T0905 钻孔摇蚊组合分析主要针对钻孔 0–25cm 段进行，鉴定共发现 24 属 30 种摇蚊，其中以 Chironomus plumosus-type、Microchironomus tabarui-type、Harnischia、Polyplepidium nubifer-type 和 Tanytarsus 为主。根据 CONISS 聚类分析，可以将摇蚊属种划分为两个主要的组合带，其中第二带又可以分为两个亚带（图 3）。

组合带 I：25–17.5 cm（约 1945–1969 年），该阶段 Tanytarsus 在整个沉积柱中的百分含量最高（近 40%），其中 Tanytarsus pallidicornis-type 的百分含量大于 20%，而 Microchironomus tabarui-type、Chironomus plumosus-type、Microchironomus 的丰度相对较低。

组合带 II：17.5–10 cm（1969–1991 年），耐营养种 Propilisocerus akamusi-type 在这一阶段经历了从无到有的过程，Microchironomus 和 Chironomus plumosus-type 的相对丰度逐渐增加，同时 Tanytarsus 较第一阶段显著下降，但 Microchironomus tabarui-type 在这一阶段波动较大，平均丰度约 6%，增加趋势不明显。

组合带 III：10–0 cm（1991–2009 年），这一阶段 Microchironomus tabarui-type 的百分含量较前两阶段有明显增加（达 20%），Chironomus plumosus-type 和 Propilisocerus akamusi-type 的丰度也与第二阶段相当，Tanytarsus 却保持了前一阶段的趋势继续减少，其平均百分含量不到 18%。

2.3 数值分析

摇蚊亚化石数据的 DCA 分析结果表明，第一、二排序轴的特征值较大，分别解释了 24.1%、11.9% 的摇蚊亚化石属种组合变率。在 DCA 属种分布图（图 4a）中，高营养种 Chironomus plumosus-type、Microchironomus tabarui-type、Tanytarsus、Propilisocerus akamusi-type 分布在图的左侧，而中营养的 Tanytarsus、Polyplepidium nubifer-type 等出现在第一轴的右侧。在样点分布图上（图 4b），第一轴很好的将组合带 I（18–25 cm）和组合带 II（11–17 cm）、组合亚带 II 和组合亚带 II（2–10 cm）区分开来。可见第一轴代表了一个相对最为重要的环境变量，显著地影响了摇蚊亚化石组合状况。

图 4 T0905 钻孔摇蚊属种 DCA 排序分析结果

Fig. 4 DCA ordination results of chironomid data from core T0905

3 讨论

摇蚊种属的分布受多种环境因子共同影响。其中温度通过对摇蚊生理机能的显著影响而成为大的地理尺度上摇蚊分布和属种组合的最重要的影响因子 [4]。pH 的变化往往能使摇蚊的丰度及多样性降低，并以多种方式影响摇蚊种属组合。与湖水营养状况直接相关的溶解氧含量可以直接作用于摇蚊的新陈代谢过程，从而对摇蚊的分布产生影响。取食状况（尤其是氮含量）影响摇蚊幼虫生长速率，而干早地区湖泊盐度的含氧量则在很大程度上决定了摇蚊分布的格局 [21]。浅水湖泊中，湖水营养状况的变化通过一系列的生态系统过程显著地影响摇蚊组合，因而摇蚊组合的变化能准确反映湖水营养状况的变化 [5]。张思军等的研究，湖水 TP 等营养指标是影响长江中下游地区湖泊摇蚊幼虫亚化石组合的主要环境因子，Chironomus plumosus-type、Microchironomus tabarui-type、Tanytarsus、Propilisocerus akamusi-type 在长江中下游地区湖泊摇蚊-湖水总磷转函数中的
总磷最适值分别为 1.96, 2.25, 2.12, 2.06, 高于其他属种, 其他地区的许多研究也说明它们适于在营养程度较高的湖泊中生存, 为耐营养种. 这些种类分布于 DCA 属种分布图的左侧, 在 1970 年以后, 这些属种分布特征明显增加, 而中等营养水平的 Tanystarsus 的相对含量则相应减少, 说明第一轴代表的是营养因子这一重要环境指标. 按点分布图 (图 4b) 中的各组合单元则分别说明岩芯所代表时期湖泊的营养状况.


4 结论


致谢: 袁和忠博士参与野外采样, 夏威场高级工程师在岩芯年代测定工作中给予很大帮助, 在此一并表示感谢.

5 参考文献

[6] Heinrichs ML, Walker IR. Fossil midges and palaeosalinity; potential as indicators of hydrological balance and sea-level