三峡水库香溪河库湾春季水华期间浮游植物昼夜垂直分布与迁移

杨敏1,2,3,毕永红1,胡建林1,胡存宇1**
(1:中国科学院水生生物研究所淡水生态与生物技术国家重点实验室,武汉 430072)
(2:中国科学院研究生院,北京 100049)
(3:重庆市环境保护研究院,重庆 401147)

摘要: 三峡水库蓄水后,香溪河库湾每年春季均会爆发硅藻水华。为了揭示香溪河库湾水华的暴发规律,于2008年春季对水华期间优势浮游植物的昼夜垂直分布格局及影响因子进行了研究。利用时间序列等值图模拟浮游植物在水柱中的昼夜垂直分布格局,并用Morisita指数对其进行定量化检验,采用修正的K-S检验浮游植物是否存在昼夜垂直迁移现象。结果表明,在藻华水华发生的吴家湾样点,拟多甲藻(Peridinium niri), 膝曲藻(Euglena geniculata)和具尾逗藻(Komma caudata)为优势种类,相对密度分别为53.47%、14.36%、21.94%;拟多甲藻具有显著的昼夜垂直迁移现象;白天主要聚集分布于水体上层,傍晚在水柱中趋于均匀分布;膝曲藻和具尾逗藻没有明显的昼夜垂直迁移活动,它们主要聚集分布于水体中下层,但随着光照强度的增强均表现出一定的趋光性。在藻华水华发生的吴家湾样点,优势种类为汉斯冠藻(Stephanodiscus hantzschii)和塔胞藻(Phramidomonas sp.) (相对密度分别为89.53%和7.96%)。汉斯冠藻昼夜垂直分布类型无显著差异,主要聚集分布于4m以上水体;塔胞藻具有昼夜垂直迁移现象。Spearman相关分析表明,光照强度的变化引起拟多甲藻和塔胞藻昼夜垂直迁移行为的主要环境因素,而其他藻类的昼夜垂直分布格局与光照强度的变化无显著相关。膝曲藻和具尾逗藻的昼夜垂直分布格局可能受光照的变化及水体扰动的共同影响。汉斯冠藻不能自由游动,其昼夜分布格局可能主要受水体扰动的影响。

关键词: 浮游植物;垂直分布;迁移;春季水华;香溪河库湾;三峡水库

Diurnal vertical migration and distribution of phytoplankton during spring blooms in Xiangxi Bay, Three Gorges Reservoir

YANG Min1,2,3, BI Yonghong1, HU Jianlin1 & HU Zhengyu1
(1: State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China)
(2: Graduate School of Chinese Academy of Sciences, Beijing 100049, P. R. China)
(3: Chongqing Academy of Environmental Sciences, Chongqing 401147, P. R. China)

Abstract: Diatoms and dinoflagellate blooms have always occurred in spring in Xiangxi Bay since the impoundment of Three Gorges Reservoir. Vertical distribution and migration of dominant phytoplankton were studied during two diel periods in Xiangxi Bay in spring 2008, which may be fundamental to understand the outbreak of bloom. In the present study, Peridinium niri, Euglena geniculata and Komma caudata dominated in WJW, accounted for 53.47%, 14.36% and 21.94% of total abundance, respectively. While in PYK, Stephanodiscus hantzschii and Phramidomonas sp. were dominant, and the relative abundance was 89.53% and 7.96%, respectively. Mapping method was used to describe the time-depth distribution of phytoplankton individuals. The dispersion patterns for phytoplankton population were tested with Morisita index, and a modified two sample Komogorov-Smirnov was used to test differences in vertical distribution. Both P. niri and Ph. sp. aggregated in the water upper layer in daytime and was close to a random distribution at night, performing diel vertical migration (DVM). E. geniculata and K. caudata did not display...
DVM. They accumulated in upper water layers and showed phototaxis. *S. hantzschii* inhabited the upper water layer. There was no significant difference in day and night distribution. Sperm inoculation analysis revealed that the diel vertical distribution of both *P. niei* and *Ph. sp.* significantly correlated with light availability, but the other algae didn’t. The vertical distribution pattern of *E. geniculata* and *K. caudata* may be influenced by dynamic of light availability and water column disturbance caused by wind. The vertical distribution of *S. hantzschii* which was non-motile may mainly affected by water column disturbance.

Keywords: Phytoplankton; vertical distribution; migration; spring bloom; Xiangxi Bay; Three Gorges Reservoir

在海洋和淡水水域中，浮游植物在水柱中的垂直分布及昼夜垂直迁移(Diel Vertical Migration, DVM)受到广泛关注，研究的门类主要集中于鞭毛藻类（甲藻、隐藻、衣藻类等）和蓝藻，对于一些不能自由游动的硅藻、绿藻也有少量研究。浮游植物的垂直迁移方式可以划分为主动迁移和被动迁移两种。一般来说，细胞密度随水体的垂直变化而垂直变化的种类属于被动迁移类型；而大多数的真核鞭毛藻类或具有伪空泡的蓝藻能够自主调节其在水体中的位置。在水体中，能够主动游动的浮游植物在水体中分布与昼夜垂直迁移的环境因子包括光照强度、水体分层、风所引起的水体扰动、浮游动植物摄食压力、藻类个体大小等。浮游植物在夜垂直分布和迁移在分层的湖泊和海湾中研究得比较多，分层水域为水柱空间温度，营养盐、氧等理化因子的异质性提供了条件。

三峡水库蓄水后，香溪河下游河段水位随之升高，水流减缓，水环境由典型的大河流域水体转变为类似湖泊的缓流水体，富营养化程度加剧，每年春季暴发的硅藻、甲藻水华，持续时间长，蔓延到整个库湾，水面呈深或浅的酱油色，严重影响当地的景观和生态系统功能。目前关于三峡库区浮游植物的研究多见于季节变化，水华发展过程等方面，但对于昼夜垂直分布的研究仅限于甲藻，尚未出现于其他水华优势种如硅藻、隐藻等昼夜垂直分层的研究。春季水华过程中，各优势浮游植物在水柱中如何分布？是否有昼夜垂直迁移现象？什么是浮游植物昼夜垂直迁移的主导因素？基于以上问题，我们对春季水华期间优势浮游植物的昼夜垂直分布和迁移进行了研究，期揭示不同浮游植物的分布和迁移类型，揭示香溪河库湾春季水华暴发的规律，确定影响垂直分布和迁移的主导因素，为三峡库区水华监测和治理研究提供参考资料。

1 材料和方法

1.1 采样方法

2008年4月，本项目在长江三峡库区，在吴家湾采样点（WJJ，31°17′N，110°35′E，图1）进行24h昼夜分层监测，样点深水点为12m。每天08：00进行，次日16：00结束，每隔2h采样一次，垂直水层设置为0.5m，然后每隔1m设置一个采样层，水深10m，共采样41个，水体使用5L采水器分别在不同水层采集水样。在现场用温度计测量水温，用ZUS-10F-2D水下光量子仪测定光照强度。

取一份水样加Lugol’s液固定后，带回实验室沉淀浓缩，用作浮游植物的定量分析，鉴別和分析方法参照文献。另一份水样经0.45μm微孔滤膜（Whatman GF/F 47mm φ）过滤后，硫酸酸洗分光光度法测定PO4-P、光合色素法测定NO3-N；叶绿素a经Whatman GF/F膜过滤后用90%丙酮提取，然后用分光光度法测定。

取一份水样加Lugol’s液固定后，带回实验室沉淀浓缩，用作浮游植物的定量分析，鉴別和分析方法参照文献。另一份水样经0.45μm微孔滤膜（Whatman GF/F 47mm φ）过滤后，硫酸酸洗分光光度法测定PO4-P、光合色素法测定NO3-N；叶绿素a经Whatman GF/F膜过滤后用90%丙酮提取，然后用分光光度法测定。

2008年4月，本项目在长江三峡库区，在吴家湾采样点（WJJ，31°17′N，110°35′E，图1）进行24h昼夜分层监测，样点深水点为12m。每天08：00进行，次日16：00结束，垂直水层设置，采样方法及所测量生物、理化指标及分析处理方法同上。

1.2 数据处理

浮游植物细胞密度及叶绿素a的昼夜垂直分布格局采用时间深度等值图进行模拟，时间深度等值图在Surfer软件(Golden Software Surfer 8)中绘制，绘制过程中采用Kriging插值模拟。同时，选用Morisita指数(Morisita Index, MI)进一步进行浮游植物在水柱中的垂直分布格局。
式中，n 为水柱取样的分层数，X_i 为水柱中第 i 层的浮游植物密度。当 $M_I = 1$ 时，表示浮游植物在水柱中随机分布；当 $M_I < 1$ 时，表示浮游植物在水柱中均匀分布；当 $M_I > 1$ 时，表示浮游植物在水柱中集群分布 \[24-25\]。

为研究不同采样时间浮游植物群落是否存在昼夜垂直迁移现象，采用修正过的 Kolmogorov-Smirnov (K-S) 检验，该方法对一次采样数据所产的离差不敏感 \[26\]，而且适用于 DVM 研究 \[27\]。

以水下光照为水面光照 1% 处的深度为真光层深度 \[21\]，混合层深度的计算参照 Kunz 等的分法 \[28\]。真光层和混合层的比值 Z_{m}：Z_{max} 计量光可见度（Light Availability，LA） \[29\]。将 M_I 指数与光可见度、水柱温差（Water Column Temperature Difference，WCTD） \[23\] 进行 Sperman 相关分析，用于检验光照、水温对浮游植物垂直分布格局的影响。相关分析在 SPSS 13.0 软件包中完成。

2 结果

2.1 理化环境因子及垂直分布

采样期间水表太阳光照强度昼夜差异显著，清晨光强最弱，之后逐渐升高，到中午或午后时到达最高，然后光强降低，到晚上光强为零（图 2）。采样期间 WJW 样点的水温范围为 11.7～13.9℃，平均为 12.8℃；PYK 样点的水温范围为 18.0～22.0℃，平均为 20.0℃，两个样点各水层间最大温度梯度没有超过 1℃/m，因此没有温跃层出现（图 3）。WJW 样点的 NO$_3^-$-N 浓度由表层向底层逐渐升高，范围为 0.549～0.899mg/L，平均浓度为 0.689mg/L。PO$_4^3-$-P 浓度从表层至水下 6m 逐层升高，8～10m 略有降低，范围为 0.0295～0.0395mg/L，平均浓度为 0.0335mg/L（图 3a）。PYK 样点 NO$_3^-$-N 浓度由表层向底层逐渐升高，范围为 0.908～1.266mg/L，平均浓度为 1.103mg/L。PO$_4^3-$-P 浓度从表层至底层逐渐升高，范围为 0.058～0.183mg/L，平均浓度为 0.131mg/L（图 3b）。

图 3 WJW(a) 和 PYK(b) 的水温和营养盐的垂直分布

Fig. 3 Vertical profiles of water temperature and nutrients in WJW(a) and PYK(b)
2.2 叶绿素 a 垂直分布

2.2.1 WJW 叶绿素 a 垂直分布 主要分布在 6m 以上水柱中，最高密度出现在 18:00 时的 0.5m 水层，为 178.60 μg/L（图 4d）。MI 指数表明，晚间 00:00 到 06:00，MI 值小于 1，叶绿素 a 在水柱中均匀分布；从 18:00 到 22:00 以及 08:00 到 16:00，MI 指数均大于 1，表明叶绿素 a 在水柱中集聚分布。叶绿素 a 的昼夜垂直分布变化趋势与倪氏拟多甲藻基本一致，同时说明倪氏拟多甲藻是第一优势种。

2.2.2 PYK 叶绿素 a 垂直分布 主要分布在 6m 以上水柱中，最高密度出现在 16:00 的 0.5m 水层，为 91.12 μg/L（图 5c）。MI 指数为 1.06~1.54，表明叶绿素 a 在水柱中集聚分布。叶绿素 a 的昼夜垂直分布变化趋势与汉斯冠盘藻基本一致，同时说明汉斯冠盘藻是第一优势种。

2.3 浮游植物垂直分布及昼夜迁移

吴家湾采样点浮游植物的优势种有 3 种，分别为倪氏拟多甲藻（Peridiniopsis niei）、具尾逗隐藻（Komma caudata）和膝曲裸藻（Euglena geniculata），相对密度分别为 53.47%、21.94% 和 14.36%；平邑采样点浮游植物优势种为汉斯冠盘藻（Stephanodiscus hantzschii）和塔胞藻（Phramidomonas sp.），相对密度分别为 89.53% 和 7.96%。

2.3.1 倪氏拟多甲藻 从 18:00 到 22:00，倪氏拟多甲藻在 5m 以上水柱中集聚分布，最高密度出现在 18:00 时的 0.5m 水层中（8.90 × 10^4 cells/L）；从 22:00 开始到日出前，倪氏拟多甲藻在 0.5m 水层的密度均低于 1m 水层中的密度，在整个水柱中分布较均匀。6:00 日出后，0.5m 水层中的密度高于其他水层，从 8:00 到 16:00，集中分布于 4m 以上水体（图 4a）。MI 值的计算表明，倪氏拟多甲藻白天在水柱中呈集聚分布，MI 指数在 1.10 到 1.65 之间；在夜间趋于随机分布，MI 指数在 1.03 到 1.05 之间（表 1）。K-S 检验表明，倪氏拟多甲藻具有明显的昼夜垂直迁移现象（P < 0.05）。

2.3.2 膝曲裸藻 在 10m 水柱内均有分布，最大密度出现在 10:00 的 2m 水层，为 6.41 × 10^4 cells/L。MI 指数在 1.23~1.84（表 1），表明在昼夜周期内集聚分布。10:00 至 14:00 之间，随光照增强，膝曲裸藻向上水层迁移，表现出一定的趋光性（图 4b）。K-S 检验表明膝曲裸藻在夜晚和白天的垂直分布类型没有显著差异（P > 0.05）。
表1 优势浮游植物及水体叶绿素a MI指数和水柱温差

<table>
<thead>
<tr>
<th>时间</th>
<th>MI-P</th>
<th>MI-E</th>
<th>MI-K</th>
<th>MI-Chl. a (WJW)</th>
<th>WCTD-WJW</th>
<th>MI-Ph.</th>
<th>MI-S.</th>
<th>MI-Chl. a (PYK)</th>
<th>WCTD-PYK</th>
</tr>
</thead>
<tbody>
<tr>
<td>18:00</td>
<td>1.63</td>
<td>1.61</td>
<td>1.83</td>
<td>1.60</td>
<td>2.6</td>
<td>1.26</td>
<td>1.73</td>
<td>1.25</td>
<td>1.8</td>
</tr>
<tr>
<td>20:00</td>
<td>1.25</td>
<td>1.71</td>
<td>1.54</td>
<td>1.27</td>
<td>2.2</td>
<td>1.11</td>
<td>1.87</td>
<td>1.39</td>
<td>3.5</td>
</tr>
<tr>
<td>22:00</td>
<td>1.10</td>
<td>1.66</td>
<td>1.54</td>
<td>1.06</td>
<td>2.4</td>
<td>1.04</td>
<td>1.72</td>
<td>1.32</td>
<td>6.2</td>
</tr>
<tr>
<td>00:00</td>
<td>1.06</td>
<td>1.39</td>
<td>1.52</td>
<td>0.94</td>
<td>2.1</td>
<td>1.02</td>
<td>1.68</td>
<td>1.23</td>
<td>4.7</td>
</tr>
<tr>
<td>02:00</td>
<td>1.04</td>
<td>1.35</td>
<td>1.50</td>
<td>0.93</td>
<td>2.4</td>
<td>1.04</td>
<td>1.95</td>
<td>1.25</td>
<td>4.5</td>
</tr>
<tr>
<td>04:00</td>
<td>1.04</td>
<td>1.23</td>
<td>1.39</td>
<td>0.89</td>
<td>2.5</td>
<td>1.05</td>
<td>1.50</td>
<td>1.16</td>
<td>6.7</td>
</tr>
<tr>
<td>06:00</td>
<td>1.07</td>
<td>1.34</td>
<td>1.90</td>
<td>0.90</td>
<td>2.0</td>
<td>1.44</td>
<td>1.54</td>
<td>1.06</td>
<td>4.1</td>
</tr>
<tr>
<td>08:00</td>
<td>1.10</td>
<td>1.35</td>
<td>2.00</td>
<td>1.22</td>
<td>1.8</td>
<td>1.94</td>
<td>1.55</td>
<td>1.13</td>
<td>3.7</td>
</tr>
<tr>
<td>10:00</td>
<td>1.26</td>
<td>1.84</td>
<td>1.49</td>
<td>1.26</td>
<td>2.7</td>
<td>1.93</td>
<td>1.66</td>
<td>1.66</td>
<td>3.8</td>
</tr>
<tr>
<td>12:00</td>
<td>1.53</td>
<td>1.80</td>
<td>1.75</td>
<td>1.62</td>
<td>2.2</td>
<td>1.62</td>
<td>1.82</td>
<td>1.82</td>
<td>2.5</td>
</tr>
<tr>
<td>14:00</td>
<td>1.23</td>
<td>1.60</td>
<td>1.93</td>
<td>1.06</td>
<td>3.0</td>
<td>2.00</td>
<td>1.97</td>
<td>1.97</td>
<td>1.7</td>
</tr>
<tr>
<td>16:00</td>
<td>1.64</td>
<td>1.87</td>
<td>1.86</td>
<td>1.79</td>
<td>3.1</td>
<td>1.55</td>
<td>1.33</td>
<td>1.33</td>
<td>2.0</td>
</tr>
</tbody>
</table>

* MI-P, MI-E, MI-K, MI-Chl. a (WJW), MI-Ph., MI-S., MI-Chl. a (PYK) 分别代表倪氏拟多甲藻, 藻曲裸藻, 具尾逗藻, 女家湾叶绿素 a, 塔胞藻, 汉斯曼盘藻, 平口叶绿素 a 的 MI 指数。

2.3.3 具尾逗藻 集中分布在 5m 以上水层，MI 指数在 1.39 到 1.94 之间（表 1），表明其在此昼夜周期内呈聚集分布，最大密度出现在 18:00 的 1m 水层，为 3.55 × 10^4 cells/L。随着光照的增强，具尾逗藻表现出一定的趋光性，向上水层聚集；在 12:00-14:00，光照达到最大时，它由表层向下迁移，表现出一定的避光性（图 4c）。虽然在晚间 00:00 至 06:00 的 3m 水层内，具尾逗藻的密度略低于白天水层中的密度，但 K-S 检验表明此时段与白天的垂直分布类型没有显著差异（P > 0.05）。

2.3.4 汉斯曼盘藻 主要分布于 5m 以上水层，最大密度出现在 06:00 时的 1m 水层，为 4.15 × 10^4 cells/L。MI 指数为 1.33 - 1.97（表 1），表明其在此昼夜周期内聚集分布。从 22:00 到 04:00，1m 以上水层中的密度比白天略低（图 5a），但 K-S 检验表明汉斯盘藻昼夜和白天的垂直分布类型没有显著差异（P > 0.05）。

2.3.5 塔胞藻 从 10:00 到 20:00，主要分布于 5m 以上水层，最大密度出现在 10:00 的 1m 水层，为 1.37 × 10^4 cells/L。22:00 到 04:00，水柱中的密度小于白天，06:00 日出后到 08:00，2m 以上水层中细胞密度比夜间明显增大（图 5b）。塔胞藻白天在水柱中趋于集群分布，MI 值为 1.27-2.00；22:00 后趋于随机分布，MI 指数约等于 1（表 1）。K-S 检验表明，塔胞藻白天与夜晚在水柱中的垂直分布类型有显著差异（P < 0.05），具有显著的垂直迁移现象。

2.4 浮游植物昼夜分布格局的影响因素

Spearman 相关分析表明（表 2），对于倪氏拟
表 2 优势浮游植物 MI 指数与环境变量的相关系数
Tab. 2 Correlation coefficients between environmental variable and MI of dominant phytoplankton

<table>
<thead>
<tr>
<th>MI</th>
<th>LA (Zmax; Zmin)</th>
<th>WCTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI-P. (n=12)</td>
<td>0.759 **</td>
<td>0.463</td>
</tr>
<tr>
<td>MI-E. (n=12)</td>
<td>0.537</td>
<td>0.469</td>
</tr>
<tr>
<td>MI-K. (n=12)</td>
<td>0.574</td>
<td>0.158</td>
</tr>
<tr>
<td>MI-Ph. (n=12)</td>
<td>0.849 **</td>
<td>0.007</td>
</tr>
<tr>
<td>MI-S. (n=12)</td>
<td>0.287</td>
<td>-0.112</td>
</tr>
</tbody>
</table>

** 表示在 0.01 水平显著

3 讨论

鞭毛藻类能够自由游动，属于主动迁移类型，它们能够根据自身所需营养和光照的需要而自主调整在水体中的位置。在香溪河库湾春季水华中，优势浮游植物多为鞭毛藻类，但它们的昼夜垂直分布和迁移行为不同。

营养盐被认为是影响鞭毛藻类昼夜垂直迁移的因素，实验研究表明，当营养充足时，鞭毛藻类有更强的趋光性，而在表层水体营养匮乏时，鞭藻类才会在夜间吸收底层水的营养[15]。香溪河库湾氮磷浓度已远远超出国际公认的水体富营养化阈值（图 3），因此，营养不充足限制香溪河鞭毛藻类昼夜垂直分布的环境因子。

汉水冠藻藻主要聚集分布于 4m 以上水层，其昼夜垂直分布类型没有显著差异。硅藻属于不能自由运动的被动迁移类型，需要依靠水体的混合而悬浮于水柱中，它们具有较高的沉降比，最大叶绿素 a 常出现在较深水层[16]，与此不同的是，汉水冠藻藻在水柱近表层细胞密度最大，这可能是由于汉水冠藻藻个体微小（直径仅为 3－5μm），被运至表层后，可以在某一水层中保持较长时间[17,36]，又因其具有较小的表面积－体积比，繁殖速度较快，易于取得竞争优势，不能运动的藻类在水柱中垂直分布的改变易受风等引起的水体扰动的影响[18]，也有文献报道硅类的昼夜垂直分布与混合层深度的昼夜变化有关[19]。

综上所述，香溪河库湾春季水华期间优势浮游植物具有不同的昼夜垂直分布类型，浮游植物的昼夜垂直分布和迁移类型是藻类本身内在的生理节律和外界光照、水体扰动因素等共同作用的结果。
甲藻和塔状藻具有昼夜垂直迁移现象。光照强度的变化是影响其昼夜垂直迁移行为的重要因素。甲藻和塔状藻的昼夜分布格局受光照的昼夜变化及水体扰动的共同影响。甲藻和塔状藻在春季大量发生，随着光照强度的变化表现出一定的趋光性或避光性，并非表层水体密度最高。因此，进行水华监测和治理时，在关注表层水华的同时，对“水华”应引起足够的重视。

4 参考文献

