Research progress of aerobic methane oxidation process in inland waters∗

Qin Yu1, Huang Huang1,2,3, Li Zhe1,3,∗∗, Lu Lunhui2,3, Tang Qiong1,2,3, Su Youheng1,2,3 & Li Xinru1,2,3
(1: Key Laboratory of Water Conservancy and Water Transportation Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, P.R.China)
(2: Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P.R.China)
(3: Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, P.R.China)

Abstract: Inland waters are important parts in global carbon biogeochemical cycles. It is also one of the main sources of methane. Annual emissions of CH₄ from inland freshwaters and natural wetlands into the atmosphere is 185~357 Tg/a. Methane is mainly produced by the reactions between bottom organic sediments and methanogenic bacteria in anaerobic zone of inland waters. Methane is then consumed by methanoxidizing bacteria during its upsurge to surface water. Methane-oxidizing bacteria can be divided into aerobic methane-oxidizing bacteria and anaerobic methane-oxidizing bacteria. Under aerobic conditions, the aerobic methane oxidation process mediated by aerobic methane-oxidizing bacteria is the main form of methane oxidation process in water, and about 99% of the total CH₄ produced at the bottom of the lake can be consumed by the aerobic methane oxidation process in the overlying water. According to the comprehensive analysis of literature collected in this paper, the process of aerobic methane oxidation is controlled by water environmental factors, hydrological conditions and ecosystem characteristics of different inland waters, and also reflected in the habitat preference of aerobic methane-oxidizing bacteria. The complex regulation process constructs the dynamic balance of the total amount of CH₄ transported from inland waters to the atmosphere, which is reflected in the contribution of inland waters to the global CH₄ cycle and carbon cycle.

Keywords: Inland waters; aerobic methane-oxidizing bacteria; aerobic methane oxidation rate; habitat preference; type of water

∗ 2020–06–30 收稿；2020–10–16 收修改稿．
国家自然科学基金项目 (51861125204) 资助．
∗∗ 通信作者；E-mail: lizhe@scu.edu.cn．
重要温室气体（greenhouse gas, GHG）[1]。自17世纪以来，快速增长的类人活动使得CH₄排放量快速增加[1]，目前全球大气CH₄平均浓度已达1.87 ppm[2]，且近10年其浓度年均速增为7.1×10⁻³ ppm/a[2]，呈现出增速加快趋势，CH₄对全球温室效应的影响在逐渐扩大。内陆水体（inland waters）主要包括湖泊、河流、水库和浅水池塘等，通常情况下不包含自然湿地（natural wetland）。尽管内陆水体占地球水生态系统总面积很小，但它们仍显著影响着全球碳收支平衡，是全球大气温室气体的重要贡献者[3-4]。

水体中CH₄浓度随时间和深度的变化是CH₄产生与消耗平衡的最终结果（CH₄动态平衡）。传统认为，CH₄在水体底部或沉积层堆积厌氧条件下由甲烷菌和古菌产生并释放进入水体。水体中的CH₄，向上输氧过程中易被甲烷氧化菌大量利用与消耗，从而明显减少水—气界面的CH₄扩散通量，最终未被消耗的CH₄释放进入大气[5]。

甲烷氧化菌（methane-oxidizing bacteria, MOB）由黏甲烷氧化菌和厌氧甲烷氧化菌所组成。内陆水体中，CH₄的氧化过程主要是由厌氧甲烷氧化菌介导的，而这一过程可能会消耗掉部分的水体CH₄[6-8]。在厌氧甲烷氧化菌影响因素方面，厌氧甲烷氧化过程对水生生物生境偏好的影响下也会受到一系列非生物因素的影响，并最终影响内陆水体中CH₄收支。本文尝试对当前厌氧甲烷氧化过程的微生物学分析，全球范围内内陆水体好氧甲烷氧化速率，其影响因素等进行汇总整理，并从生物因素、非生物因素两个方面，对当前内陆水体好氧甲烷氧化过程研究进展进行探讨。

1 好氧甲烷氧化菌作用机理及类别

好氧甲烷氧化菌是甲基营养细菌的一个分支，MOB广泛分布于各种水体环境中[8]。其中甲烷单加氧酶（Methane monooxygenase, MMO），包括可溶性甲烷单加氧酶（soluble MMO, sMMO）和颗粒性甲烷单加氧酶（particulate MMO, pMMO），是推动微生物代谢层面上CH₄氧化的关键[9-12]。两类 MMO 会催化氧化 CH₄ 酶（CH₄OH）、CH₄OH 被进一步氧化为甲醛（HCHO）。而后 HCHO 通过戊糖—磷酸核酮糖（RuMP）途径或者丝氨酸（Serine）途径进一步反应被转化成甲酸或者细胞质，最终所有的反应会将 CH₄ 反应成为 CO₂。好氧甲烷氧化菌具体代谢过程如图1所示。目前普遍认为，sMMO 仅存在于少数的甲烷氧化菌中，pMMO 存在于几乎所有已知的甲烷氧化菌中[13-14]。最初，基于生理、形态、超微结构和化学分类学特征，好氧甲烷氧化菌被分为 Type I 型与 Type II 型两大类。Type I 型好氧甲烷氧化菌特征是：（i）以 RuMP 作为反应途径去同化产生的甲醛；（ii）细胞内主要含有 16-C 脂肪酸；（iii）细胞膜形态呈束状分布；Type II 型好氧甲烷氧化菌特征是：（i）以 Serine 作为反应途径去同化产生的甲醛；（ii）细胞内主要含有 18-C 脂肪酸；（iii）细胞膜在细胞膜的内侧分布的脂质中[15]。对 16s rRNA 基因序列的系统进化分析也证实了上述分类，进一步将 Type I 型和 Type II 型好氧甲烷氧化菌分别归于 γ-变形菌和 α-变形菌[16]。

图1 好氧甲烷氧化菌代谢过程化学反应路径

Fig.1 Chemical reaction path in metabolic process of aerobic methane-oxidizing bacteria
随着研究人员认为，好氧甲烷氧化菌的分类系统更加复杂。目前，γ-变形菌纲（Gammaproteobacteria，约16属，也称之为Type I型）、α-变形菌纲（Alphaproteobacteria，约6属，Type II型）被划分为Ia型和Ib型好氧甲烷氧化菌[17-18]；γ-变形菌（Type I型）的划分方式仍然存在一定分歧，一般的划分方式是将Methylococcaceae科划分为Ia型和Ib型，Methylbacteriaceae科划分为Ic型好氧甲烷氧化菌[19]。在2007年的Nature报道的3株极端嗜酸（pH<2）的好氧甲烷氧化菌中，它们均属于疣状菌门（Verrucomicrobia，目前约有2属），这种新发现细菌被划分为Ⅲ型好氧甲烷氧化菌[20-22]，而其相应的循环途径（CBB）是将CO₂作为碳源供自己代谢活动。在这种CO₂的利用过程中可以与自然环境的二氧化碳（CBB）中，这种CO₂的利用过程中可以与自然环境的二氧化碳（CBB）中，这种CO₂的利用过程中可以与自然环境的二氧化碳（CBB）中的CO₂的来源。这与NC10门厌氧甲烷氧化菌的代谢过程相同。

现阶段，陆水体中好氧甲烷氧化菌研究大多围绕γ-变形菌和α-变形菌的生态位分化展开。在此基础上，好氧甲烷氧化菌系统分类研究则更加强化了对菌种的地理分布及生境偏好研究，这为陆水体中CH₄氧化的分析过程提供新思路。

2 内陆水体好氧甲烷氧化菌生境偏好

好氧甲烷氧化菌最早发现于20世纪初，但直到1970s，才对进行了广泛的分离和鉴定，以便进行详细的研究。大多数已知的好氧甲烷氧化菌在中等酸碱度（pH 5~8）及温度范围（20~35℃）下生长最好，随着生物化学进步（生长大于15℃），酸碱（生长大于40℃），酸碱（pH>9.0）和酸碱（pH>5.0）的特殊好氧甲烷氧化菌在极端环境中生存被逐渐分离出来[23-24]。对于非极端条件下陆地水体而言，温度和二氧化碳（CO₂）浓度，CH₄浓度联系紧密，三者构成了好氧甲烷氧化菌活性与代谢途径的直接影响因素，因而研究好氧甲烷氧化菌生境时往往伴随三种影响因素的三因素的研究

陆地水中Type I型好氧甲烷氧化菌通常被认为是CH₄氧化的“先锋菌”。在一些水体表层沉积物中Type I型好氧甲烷氧化菌的pmoA基因拷贝量甚至比Type II型好氧甲烷氧化菌高1~2个数量级[25-26]。Type II型好氧甲烷氧化菌则更像是CH₄氧化的“常备军”。尽管Type II型好氧甲烷氧化菌不常占优，但却呈现出对生境胁迫（温度、DO等）的高耐受性，具有更强的“弹性”或稳定性以应对生境变化[27]。故有研究者倾向于将Type I型好氧甲烷氧化菌的生存策略归纳为“C型”（竞争者），而Type II型好氧甲烷氧化菌的生存策略则更接近于“S型”（胁迫耐受者）[28]。

2.1 好氧甲烷氧化菌的温度偏好

Shivaji等[29]认为每种类型的好氧甲烷氧化菌都有适宜生长的温度，温度的变化也可能导致好氧甲烷氧化菌群落结构发生变化，同时有研究表明降解和温度的相互作用对此对部分好氧甲烷氧化菌丰度带来明显变化[30]。同时温度也会影响好氧甲烷氧化菌的酶活性，如羧甲硫醇还原酶、已糖磷酸合酶、甲酸脱氢酶和核糖二磷酸羧化酶活性等[31]。尽管Type I型好氧甲烷氧化菌和Type II型好氧甲烷氧化菌在较宽的温度范围内都具有活性[32]。但通常情况下，Type II型好氧甲烷氧化菌在大于15℃的温度下生长更好[33-34]。Type I型好氧甲烷氧化菌则在低温（5~15℃）下更有利[24]，例如在南极分离的Methylomonas scandinavica 就属于耐低温[35-36]。但Type I型好氧甲烷氧化菌只有在低温下才适宜生长。在某些条件下，Methylococcus 和Methylcaldum就是一类特殊的耐热菌，而Type I型中的Methylothermus thermales 最高活性下的温度超过了55℃[37]。而拥有高耐受性的Type II型好氧甲烷氧化菌也存在耐低温的菌种[26]。

2.2 好氧甲烷氧化菌的溶解氧浓度偏好

陆地水体不同类别的好氧甲烷氧化菌群落分布会受到DO浓度的明显影响，有研究发现分层明显的水体中，表水和中层水主要由Type II型好氧甲烷氧化菌为主，而Type I型好氧甲烷氧化菌在深水中占主导[41]。在陆地水体中，所有好氧甲烷氧化菌很少出现在水体表层，这是因为水体表层过高的DO浓度会抑制好氧甲烷氧化菌活性，所以通常好氧甲烷氧化菌丰度最高处发生在沉积物或水体中的好氧-厌氧交界处，即DO浓度和CH₄浓度梯度最交处[42]。然而Pavin湖的缺氧层中检测到了Methyllobacter属好氧甲烷氧化菌[43]，且部分的培养实验表明Type II型好氧甲烷氧化菌更适应极端缺氧条件。同时原位实验发现，Type I型好氧甲烷氧化菌在极端缺氧环境中占有属有的存在。例如Kalyuzhnaya等[44-46]研究发现，Methyllobacter alcalophilum strain 202在DO含量低于5%时，好氧甲烷氧化菌的活性会受抑制而反应速率下降，Methyllobacter trichosporum OB3b和Methyllobacter parvus OBBP对于DO含量变化响应不明显，而Methyllobacter trichosporum
最适 DO 含量在 1.6% ~ 18% 之间。这一系列研究表明好氧甲烷氧化菌，特别是 Methylobacter 属在低 DO 含量条件下具有更高的活性。而从生物因子角度解释，好氧甲烷氧化菌产生活性物质（包括超氧化离子自由基、过氧化氢和羟基自由基）作为代谢过程中的副产物，这会对细胞结构造成氧化损伤，因此大量好氧甲烷氧化菌存在于 DO 浓度更低且 CH₄ 浓度更高的水体深层，既满足了基本的氧需求也满足反应底物浓度的需求。因此，当 CH₄ 浓度较低时，好氧甲烷氧化菌的代谢效率将降低。

2.3 好氧甲烷氧化菌的甲烷浓度偏好
好氧甲烷氧化菌的代谢过程活性也会受限于 CH₄ 的浓度，其浓度和可利用性是影响代谢过程的关键因素之一。低 CH₄ 浓度会导致好氧甲烷氧化菌活性下降。型 I 型好氧甲烷氧化菌对 CH₄ 浓度变化反应较 Type II 型好氧甲烷氧化菌明显，而且对适宜的水环境条件占优势。Crevecoeur 等发现，加拿大魁北克自然水体的研究中发现型 II 型好氧甲烷氧化菌在高密度的 CH₄ 下（过高或过低）倾向于占优。其原因可能是因为 Type II 型好氧甲烷氧化菌对生境胁迫的高耐受性，在极端 CH₄ 浓度下尤为显著。因而 Type I 型好氧甲烷氧化菌可能在支持其快速生长的稳态环境中占主导地位，而 Type II 型好氧甲烷氧化菌则更能承受环境的波动影响，并在极限环境下占主导地位。

2.4 好氧甲烷氧化菌的其他环境因子偏好
好氧甲烷氧化菌被认为是快速生长的细菌，通常需要几周时间实现倍增。有研究发现多个具有相似生长的对比如 P. aeruginosa 的好氧甲烷氧化菌丰度也更高。这是因为所有微生物都需要能量来进行细胞分裂、能量转化和细胞生命维持，因此好氧甲烷氧化菌可能会因厌氧细菌的快速生长而无法竞争营养。而当细菌生长竞争激烈的情况下更高的 CH₄ 浓度可以使好氧甲烷氧化菌不受磷的限制。除了磷和微生物种群之间的相互作用以外，其他营养盐可能进一步增强了好氧甲烷氧化菌的生长和影响随后的 CH₄ 氧化。因具备固氮功能或具有好氧反硝化能力，部分好氧甲烷氧化菌其 N 循环亦具有密切关联性，但无机氮浓度(NH₄⁺ 或 NO₂⁻) 沾污以来对于 CH₄ 氧化的研究是矛盾的，已有机氮影响的证据有示例和有示例。而对于好氧甲烷氧化菌代谢过程，MMO 会受 Cu 可用性的限制，同时代谢过程中的酶也会受到环境的影响。对于菌种来说，溶解性有机碳 (DOC) 溶解过低会导致好氧甲烷氧化菌丰度更高，且可能会出现更高的 Type II 型好氧甲烷氧化菌。Hofmann 等[6]表明，无论组成群落的好氧甲烷氧化菌具体如何，一个多样化好氧甲烷氧化菌群落对于刺激 CH₄ 氧化都有重要意义。

3 内陆水体好氧甲烷氧化速率数据分析

3.1 同位素测试甲烷氧化速率方法
好氧甲烷氧化对不同重碳元素的 CH₄ 分子利用程度不同，所以出现了在氧化一部分 CH₄ 分子后，剩余的 CH₄ 分子中¹³CH₄ 相对丰度的情况。这种情况下，同位素丰度和动力学上的差异使我们可以利用 CH₄ 氧化速率的 δ¹³CH₄ 或者 δ¹²CH₄ 值来定量地表示 CH₄ 氧化的速率。

在前期探索中，许多研究者发现 CH₄ 的氧化可利用 Rayleigh 蒸馏公式[67]、Coeman 等[68] 在 1981 年发表的文章中推导并定义了一套 CH₄ 氧化公式，该公式与 Rayleigh 公式本质上相同，都是对分馏系数 α 的探讨，后续在研究 CH₄ 氧化速率中使用的分馏系数 α 含义也来源于此。之后在 2002 年 Bastviken 等[69] 比较了当时主流的几种 CH₄ 氧化测试方法，发现 C¹³ 和 C¹² 浓度和质量平衡模型都能展示相同的规律，之后很多文献使用 C¹³ 浓度来测量 CH₄ 化学速率的公式大多是基于此。但除此之外，并不是所有的地区都存在一个较高且合适的 CH₄ 浓度，同时也不能忽视有机碳体在生产 CH₄ 时送到。传统的测试方法在测量更低 CH₄ 浓度条件下的氧化速率时无法得到精确的数据，并且在体本身产生 CH₄ 的情况下会低该氧化速率。而采用放射性同位素¹³C 标记的 CH₄ 分子可以在 CH₄ 浓度非常低的情况
下测得 CH4氧化速率。但实际操作中，放射性同位素1H受本身造价以及更严格的控制条件要求并未大范围运用在内陆水体中，而主要利用海水的 CH4氧化测试。

3.2 全球内陆水体好氧甲烷氧化速率调查统计

本文调查收集了好氧甲烷氧化速率 (methane oxidation rate, MOX) 研究全球范围内数据共40余篇文献，文献均来自于 Web of Science 中公开发表的文献，搜索关键词为 Methane oxidation, Aerobic methane oxidation, Aerobic methane-oxidizing bacteria, Methane oxidation rate。对检索到的文献进行分类，删除海洋、河流入海口、土壤研究。文献调查含39个湖泊, 1个河流, 2个水库。此外，为方便比较，文献检索中增加了7个河口与海岸案例(图2).

图2 全球内陆水体好氧甲烷氧化速率分析

Fig.2 Analysis of aerobic methane oxidation rate in inland waters around the world
湖水低浓度限制着水体的 CH₄ 氧化。[87,23] 在不同水深 MOX 分布中（图 2C），发现营养学术 MOX 与水深显著相关（R>0.05），而表层营养水体 MOX 与水深显著负相关（Spearman，P<0.05），其原因可能是 CH₄ 由底部产生直至上覆水过程中，由于水体过深导致气体在水柱中停留时间过长的综合作用下整个水柱 CH₄ 氧化发生明显改变。[74]。

4 不同类型内陆水体好氧甲烷氧化过程研究进展

不同类型水体具有明显不同的水文条件、水环境条件与水生态特征，所处地理区域及所受人类社会活动影响大小的不同，故本小节将对不同类型的内陆水体（湖泊、河流、水库为主）以及其他水环境好氧甲烷氧化过程进行综合，以期对不同内陆水体好氧甲烷氧化过程变化情况有更加明晰的把握。

4.1 湖泊中的好氧甲烷氧化过程

CH₄ 的产生与氧化问题已在湖泊中进行了广泛的研究。CH₄ 是湖泊中碳代谢的主要产物，湖泊中产生的 CH₄ 被氧化的比例可能很高（30% ~ 90%）。由于分层通常是在深水湖泊的一个特性，溶氧物质的积累导致上下层间的密度差异阻止了其完全混合，相应的 DO 分层情况也十分明显。[75] 影响分层的可能因素包括水体的混合过程、湖底沉积物的氧化还原作用及生物活动等。[76] 好氧甲烷氧化过程是一种需氧过程，准确的说在通常情况下是一种需氧过程。CH₄ 氧化受到 DO 浓度的限制。[77] 在深浅不一的大型湖泊中，大的 DO 梯度往往决定于 CH₄ 氧化层（好氧甲烷氧化菌聚集并进行代谢的微氧区域）的深度，CH₄ 氧化层区域越广，MOX 就越高，这种氧化层的差异在季节性分层中尤为明显。[78] 与深水湖泊相比，浅水湖泊溶解氧不易出现，很多水体全年水柱都是有氧状态，这也使得可能经过计算后水体无明显的好氧甲烷氧化过程，导致部分浅水湖泊中好氧甲烷氧化菌研究需要延展到沉积物中。

虽然 DO 是好氧甲烷氧化过程所必需的物质，但过低浓度会影响好氧甲烷氧化菌的活性从而降低 MOX。[80] 研究资料表明，DO 浓度通常在低 DO 浓度区域，并伴随较高 CH₄ 浓度，而湖泊表层的 DO 浓度过高，MOX 显然会形成微氧甚至无法检测。有研究者发现低 DO 浓度与高有机物沉积速率相结合，会导致“新鲜”有机物更容易地团聚在沉积物中，有利于 CH₄ 生成。同时湖泊水体的水柱缺氧时的水柱分层阻碍了底部水和表水层之间的交换，这又会进一步促进底部水中 CH₄ 的积累。然而湖泊中微氧并不总是能观察到最高 CH₄ 浓度，其原因可能是过高的 MOX 导致 CH₄ 净产出量减少，这也解释了为什么在深水湖泊中出现 MOX 大于 CH₄ 产生速率的情况。

对低纬度热带湖泊、温带湖泊和北方湖泊进行比较，大多数生物代谢过程都与 CH₄ 氧化也会表现出温度依赖性，[25] 一个季节的高温会加快好氧甲烷氧化菌的生长，因此常常能观察到低纬度热带湖泊 MOX 大于后者，[79,80] 且通常较热带湖中可以观察到水体有较凉的 MOX 周转率。[82] 而高纬度地区水温在地球上所有湖泊中占比例很大一部分，一年中的很多年温度不能被遮盖，冰融化时 CH₄ 释放占全年 CH₄ 排放的比例较大，高 FOR 也会出现在这个阶段。这是因为冻土中 DOC 大量输入所带来的营养物质能够提高水体 CH₄ 浓度。[74] 例如 yedoma 型冻土（主要出现于西伯利亚、阿拉斯加和加拿大西北部前未冰化地区一种富含有机物质的冻土）由于温度升高冻土融化会带来大量的 CH₄ 底物。[77]

内陆湖泊中 Type Ⅰ型好氧甲烷氧化菌主导着整个湖泊水体的 CH₄ 氧化过程，对 CH₄ 循环有着显著有作用。例如 Washington_Constance 湖以及其他湖泊，[50,43,44] 同时也发现 Type Ⅰ型好氧甲烷氧化菌通常是在温带湖泊中上层细菌群落的重要组成部分，[45] 对于逃逸到水体中上层的 CH₄ 起主要的消耗作用。对于部分湖泊中上层水样进行功能基因序列，发现 Type Ⅰ型好氧甲烷氧化菌中的 Methylobacter 属占主导地位。[45,84-85] 而在 Retrose 湖和 Zug 湖中，利用稳定同位素标记与单细胞分析质联用，发现 Type Ⅰ型甲烷氧化菌中的 Crenothrix polyspora 参与了氧化过程，形成了自身以下的 CH₄ 氧化过程。[46] 一些低纬度热河湖泊中虽然表层的好氧甲烷氧化菌以 Type Ⅱ型为主，但在营养程度更高的深层水体与底部沉积物依然是好氧甲烷氧化菌更为富集，[65] 而在湖泊沉积物中 Methylocaldus, Methylothermus, Methylocystis 等中 Type Ⅰ型好氧甲烷氧化菌是 CH₄ 氧化过程的主要贡献者。[30,41,48]
4.2 河流中的好氧甲烷氧化过程

河流水文水动力条件明显不同于其他内陆水体，且受人类社会活动影响较大。相对于大气，许多河流表层的 CH₄ 和 CO₂ 都过饱和，河流也因此成为了快速的碳循环场所。虽然一部分碳最终被输送到海洋，但更多的碳被河流中代谢并以 CH₄ 气体的形式流失到大气中 [8]，由于这种快速的排放，河流向大气排放 CH₄ 的潜力在不断接受社会影响下对大气中的温室气体影响日益加重。河流河床会对 CH₄ 生产做出快速的响应，即 CH₄ 的氧化，从而 CH₄ 通过沉积物的扩散（清水水流携带 CH₄ 氧化层一般可以忽略不计），所以一旦 CH₄ 处于河流沉积物上层，可使河流改变在 CH₄ 氧化排放的最终屏障。而由于不同河流水体之间的水力条件差异较大且水体本身周转周期较快，同时河流一般无法像水库以及湖泊出现特别明显的水分层现象，微氧区域很难出现在河流水体中。

在所有水层中，表层水体接受的光辐射程度最高，河流由于其水深较浅受到光照影响也就最为明显。光辐射强度过大抑制好氧甲烷氧化菌的活性 [27]，使得在昼夜循环中 MOX 表现出较大的差异。同时由于水体光辐射强度会受到 DOC 浓度的影响而加快衰减，因而上部光照充足的水层中 DOC 浓度是光照对 MOX 影响的重要预测因子，但是光限制不再是有有效驱动因素的黑暗深层水中会被 DOC 浓度所取代 [22]。河流沿程光照条件复杂，微氧区域分散，DOC 输入来源众多（很多河流靠近人类生活生产），所以单条河流好氧甲烷氧化菌生物群研究对整个河流生态体系代表性意义并不大，更多对河流的研究都集中在了 MOX 与其影响因素上。

CH₄ 作为好氧甲烷氧化菌主要的碳源能量，MOX 与 CH₄ 生产率是相辅相成的，且 MOX 对 CH₄ 浓度变化响应最为敏感 [27,29]。当河流中的 DO 浓度满足好氧甲烷氧化菌需求，CH₄ 浓度对 MOX 的影响明显高于 DO 浓度。与其他湖泊和土壤中一样，CH₄ 养生作用在河床沉积物中也受底质限制，因此 MOX 随 CH₄ 浓度的增加基本呈线性增加 [8]。中小型河流中，河床河石颗粒对 MOX 有一定影响。Shelley 等 [4] 发现粗砂砾河床 MOX 因 CH₄ 底层浓度虽低但仍然存在；在较细的泥沙沉积区 MOX 显著升高（单颗粒沉积物由于其密集的形态拥有更大的 CH₄ 容量，会同时生成 CH₂ 和氧化 CH₄），受温度影响显著，超过 CH₄ 产生速率。若河流受光条件不佳甚至受到遮挡，河流 MOX 则显著升高 8% [90]；而在 Elbe 河的研究发现，好氧甲烷氧化过程主要存在于河床，MOX 在上游山区河段明显强于下游河段 [10,42]。Barbosa 等 [82] 对河流的季节性研究则发现，河流由于季节性枯水与丰水在水位和流量上有很大波动，使 MOX 有显著改变。而其中部分河流季节性丰水期会发现夏、秋季 CH₄ 总损失量会高于春季，冬季 [52,114]，且季节性降雨所导致的水温变化可直接影响微生物代谢率，例如产甲烷菌和甲烷氧化菌。而由于河水中存在的物理、化学机理，河流入海口处的盐度和悬浮颗粒物浓度能强烈影响 MOX，有研究表明水体中盐度能对 MOX 产生一定抑制作用，而悬浮颗粒物浓度对 MOX 表现为积极影响 [52]。

4.3 水库中的好氧甲烷氧化过程

水库是受到人为影响的大型内陆水体，由于其产 CH₄ 底物与 CH₄ 的来源丰富，CH₄ 的生产、运输、氧化过程更为复杂。水库 CH₄ 主要排放途径分为三类：浅水区气泡释放、水一气界面扩散释放、水轮机和溢洪道下游的消气释放。与湖泊相同，由于热带地区水库温高，有利于有机物的降解。CH₄ 生产和氧化高于相似条件下温带、北方水库，同时 MOX 也相应很高 [27,93]。水库由于其凋落作用具有水力条件季节性变化明显，而季节变化带来的温度变化有时会严重影响 CH₄ 在亚热带和热带水库的深层区域中的生产，使得 CH₄ 氧化受 CH₄ 浓度限制 [43]。同时在春季和秋季，有的水库强分层，DO 漫透并不够，好氧甲烷氧化菌只能在更小的范围内活动 [58]。这与 Lofton 等 [85] 提出的特定基质—温度相互作用理论相吻合，只有 CH₄ 处于饱和条件下 MOX 受到温度的影响明显观察到，即在限制 CH₄ 浓度时温度对 MOX 影响并不明显，因此 MOX 还依赖于与温度相互关联的其他环境变量，这在温度分层和氧分布尤为明显，水深水库十分重要。同时温度对表层水中 CH₄ 氧化的可能受到水中 DO 浓度的调节，而在低氧条件下，温度变化没有明显影响 CH₄ 氧化 [24]。且由于水库的分层现象，在不同水层运输过程中 CH₄ 向上扩散和 DO 向下漫透都会受到一定影响 [96]。因此在水库水层与混合不同阶段会发现 CH₄ 浓度和 DO 浓度有相当大的差异，好氧甲烷氧化菌生长区域也会因此受限。Type I 型甲烷氧化菌和 Type II 型好氧甲烷氧化菌在水库中因 DO 构成的氧化层中均有广泛分布。在亚热带水库（Little Nerang Dam, Lake Baroon 和 Lake Wivenhoe）可以发现丰富 Type I 型好氧甲烷氧化菌。
氧化菌（如 *Crenothrix polyspora*, *Methylomonas*, *Methylocaldum*) [9]。而位于法属圭亚那的 Petit-Saut Reservoir 则观察到了 Type II 型好氧甲烷氧化菌占据着主导的 CH₄氧化活动 [7]。

水库拥有着特殊水利条件与消落带涨落情况，这使得水库有着高外来输入有机碳的特性，低中营养内陆水体中陆地来源的 DOC 会明显影响水体的颜色，水体颜色变化与温度层温度更能减少光的穿透，达到光抑制作用 [9], 使得表层光照强度下降而提高表层 MOX，并由于表层水 DO 的更多消耗进一步导致缺氧性水层扩展到了较深的深度，形成深层水体缺氧状态。因此控制水库等内陆水体的 CH₄氧化有 2 个尤为重要的变量——DO 浓度和有效光辐射，这会导致水体中 DO 浓度的影响，从而使 DO 浓度间接影响 MOX。同时，水库底部的有机物本身转化过程所导致的耗氧也会影响 CH₄，经过好氧甲烷氧化菌被氧化。而对于菌种本身来说，DO 浓度过高通常会伴随着更高的好氧甲烷氧化菌丰度，且可能会出现更高的 Type II 型好氧甲烷氧化菌比例 [6]。

4.4 其他内陆水环境的好氧甲烷氧化过程

湿地生态系统是陆地生态系统与水体生态系统等的过渡型生态系统。湿地生态系统水土面积不超过 10%，有机质含量几乎储存大量的 18% [98]，但向大气释 CH₄总量却占据了全球自然生态系统中的 CH₄排放总量的 30% 左右 [99]。好氧甲烷氧化菌在湿地生态系统中即能氧化掉的 CH₄产量的一半左右，但无法像内陆水体一样提供更为好氧的甲烷氧化菌生存区域面导致部分湿地其 CH₄氧化可能是由于厌氧微生物介导，同时湿地水文条件也决定了湿地生态系统有较高的 CH₄逃逸速率，使其成为了自然生态系统主要的排放源之一 [82]。目前湿地发现的好氧甲烷氧化菌主要为 α-变形菌和 γ-变形杆菌，并未发现 *Verrucomicrobia*。其中属于 Type II 型好氧甲烷氧化菌首先由 McDonald 团队发现，后来揭示了偏酸性湿地的主要菌种来源是 *Methylosinus* 和 *Methyloxydatis*，后者发现在偏酸性湿地处更加常见的位置 [100-102]。而后 Type I 型好氧甲烷氧化菌也在一些自然湿地被逐步发现 [103]，其中 Kip 等 [104] 首次发现了适应性酸性湿地的 Type I 型好氧甲烷氧化菌，大量的湿地研究中 *Methyloxydatis* 通常占据着主导的 CH₄氧化工作，在偏酸性湿地区也是 Type II 型好氧甲烷氧化菌；而在极端寒冷条件下的湿地生态系统中 Type I 型好氧甲烷氧化菌占比更大。相应的，我国对于若干低湿地、日干乔湿地等地区近些年也启动了相关的研究，发现 Type I 型好氧甲烷氧化菌占比更大，且 *Methylbacter* *Methyloxydatis* 两类菌种是主要的 CH₄氧化参与者 [17,105]。

浅水池塘作为内陆水体的一部土其碳动态关注度也在逐渐升高 [106]。这类小型浅水系统其系统特征会影响 CH₄排放以及氧化，并能从一定程度上解释部分地区 CH₄排放被低估的现象有可能来自于浅水池塘 [107]，例如，人为活动影响下的水产养殖池是强富营养水体 CH₄排放源，通常其气泡形态排放的 CH₄占比会明显高于其他水体 [108-109]。而其他内陆环境，例如森林、草原甚至城市水域等也会发现好氧甲烷氧化菌的影，但其由于其不易满足好氧甲烷氧化菌生存与好氧环境使得好氧甲烷氧化菌无法大量氧化 CH₄的产出。

5 内陆水体好氧甲烷氧化过程对全球碳循环的贡献

内陆水体作为全球 CH₄预脉的重要来源，自然生态系统考虑到开放水域和植物介导的通量，湖泊生态系统被认为对总的自然 CH₄排放约 6%～16% 的贡献 [100]。河流向大气释 CH₄年均总量约为 26.8 Tg/a；水库向大气释 CH₄年均总量约为 17.7 Tg/a [4,411]，两者分别占全球内陆水体向大气释 CH₄总量的 16%、22%。内陆水体对大气温室气体的贡献是 CH₄在水环境中“源”与“汇”动态平衡下的结果，也就是产甲烷菌产出与甲烷氧化菌氧化共同调节下的整体反馈。实际上来自自水体产生的 CH₄总量远大于监测到输入大气的 CH₄的总量。但由于两菌在温室效应温度下变化的响应不同，这种“源”与“汇”的动态平衡始终以“源”大于“汇”的正向反馈为主，形成了全球变暖正反馈回路机制 [112]。即温度变暖刺激“源”大于“汇”的动态平衡导致 CH₄排放进一步增加继续扩大全球变暖，这样 CH₄反馈回路也反过来反映了在全球碳循环的反馈回路中。在最近的研究中，通过将甲烷氧化菌对 CH₄的敏感程度进行划分，所呈现出的 CH₄高敏性甲烷氧化菌对全球碳循环的 CH₄“汇”有着更为明显作用，使得好氧甲烷氧化过程对全球碳循环的贡献日渐明显 [115]。而随着研究者不断对极端生境下新类型甲烷氧化菌以及更多兼性甲烷氧化菌的发现，也对全球碳收支预算提出了更高更精细的要求，推动着人类对 CH₄循环、碳循环的进一步认知。

从菌种本身来看，好氧甲烷氧化菌广泛的分布在内陆水体（湖泊、河流、水库、浅水池塘）、湿地、森林、草
原等陆地生态系统环境中。菌群以碳源作为生长代谢的能源，其介导的好氧甲烷氧化过程是全球碳循环重要的微生物调节。一方面，好氧甲烷氧化过程理想情况下几乎可以氧化掉所有水体底部产生的 CH₄，是 CH₄ 由水体向大气释放过程中的“生物过滤器”和“最后屏障”¹¹⁴-¹¹⁶。另一方面，好氧甲烷氧化过程使 CH₄ 成为水生生态体系中重要的碳源¹¹⁷。它直接促进了好氧甲烷氧化菌的增殖，并逐渐丰富形成了以“好氧甲烷氧化菌—浮游或底栖动物”为核心的微生物环¹¹⁸-¹¹⁹。对水生生态系统结构功能产生显著影响¹²⁰。

6 展望

尽管目前对不同类型好氧甲烷氧化菌的生境偏好已有基本轮廓，但对于动态水文环境如何影响好氧甲烷氧化菌群构建与生态功能迄今仍鲜有报道，这成为了当前动态水文环境下好氧甲烷氧化过程水文生态机制仍不明确的关键制约因素，特别是突发的极端因素变化（如气温骤变、强降雨、季节性干旱、洪涝等），从而导致好氧甲烷氧化菌的生存条件改变，需要更多细致的研究。且在当前内陆水体好氧甲烷过程中研究中，超过 90% 的研究案例集中于水文环境相对稳定的湖泊或湿地系统，而在流动性较强或水动力条件较为复杂的水体中，好氧甲烷氧化过程的研究积累还极为有限。这一块重要的内陆水体组成部分数据上的空白，是今后研究内陆水体好氧甲烷氧化过程需要补充的重要内容。

7 参考文献

[16] Bowman JP, Sly LI, Nichols PD et al. Revised taxonomy of the methanotrophs—description of methylobacter gen nov,
emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family methyl-coxaceae includes only the group-i methanotrophs. International Journal Systematic Bacteriology, 1994, 44(2): 375-375. DOI: 10.1099/00207713-44-2-375.

[35] Melvedkovka KA, Khmelenina VN, Trotsenko YA. Sucrose as a factor of thermal adaptation of the thermophilic methano-

Kalyuzhnaya MG, Yang S, Ronova ON *et al.* Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. *Nature Communications*, 2013, **4**: DOI: 10.1038/ncomms3785.

Roskowski KH, Pfluger AR, Griddle CS. Stoichiometry and kinetics of the PHB-producing Type II methanotrophs *Methylomas trichosporium OB3b* and *Methylocystis parus* OBBP. *Bioresource Technology*, 2013, **132**: 71-77. DOI: 10.1016/j.biortech.2012.12.129.

Horz HP, Raghuvanshi AS, Heyer E *et al.* Activity and community structure of methane-oxidising bacteria in a wet mead-

