Water resources regulation research of reservoirs and ponds combined irrigation system based on simulation optimization and orthogonal experiment

Jiang Shangming1, CAO Xiuling1, JIN Juliang2,3,*, YUAN Xianjiang1, XU Hu1 & ZHANG Libing2,3

(1: Key Laboratory of Water Conservancy and Water Resources of Anhui Province, Water Resources Research Institute of Anhui Province and Huahe River Commission, Ministry of Water Resources, Hefei 230088, P.R.China)
(2: School of Civil Engineering, Hefei University of Technology, Hefei 230009, P.R.China)
(3: Institute of Water Resources and Environmental Systems Engineering, Hefei University of Technology, Hefei 230009, P.R.China)

Abstract: Based on the long sequence test results of mutual transformation between precipitation and crop water consumption and soil water from irrigation experimental station, water simulation module of the whole process of field scale Storage-Water Consumption-Irrigation-Drainages was built. Combined with the system simulation method, the simulation rules of water allocation for different types of ponds and backbone reservoirs are formulated. Then the water distribution simulation model of reservoirs and ponds combined irrigation system is established, to simulate irrigation water of diversion and pumping station, precipitation, soil water and their mutual transformation of Daguantang Reservoir irrigated area. To maximize economic efficiency as the goal under precondition of basic water irrigation water supply security. By using the principle of orthogonal test, water resources optimal regulation model of reservoirs and ponds combined irrigation system is constructed. Based on the simulation and orthogonal experiment, the water resources optimization control technology system is formed. The reasonable engineering layout size and scale of the Daguantang Reservoirs irrigation district are determined. The suitable water saving irrigation technology model and irrigation system are determined. Scientific scheduling rules of rules and reservoirs are developed. Operable rules of crop planting structure adjustment are improved. Storing runoff utilization of irrigation district is improved. To enhance the annual water supply capacity of ponds and reservoirs and the ability of drought resistance and disaster reduction. To provide theoretical basis for comprehensive treatment of Lake Chaohu Ba...
水文资源短缺和水土环境恶化已成为制约中国乃至全球农业和经济可持续发展的瓶颈。合理配置和高效利用有限的水资源，使其既保障基本生活与生态需水，又能满足工农业生产需求、实现区域经济、社会和环境的可持续发展，一直是水文学家研究和解决的关键科学问题。1950s 以来，国内外学者以系统分析与协调理论为基础，通过改进和应用不同优化算法求解优化配置模型，建立了许多区域水资源配置模型，取得了丰硕的研究成果。现有研究成果中的配置水源多为可控的地表水和地下水，很少包含大气有效降水和土壤水等非常规水资源。而对于灌区水资源供需平衡而言，大气有效降水和土壤水的作用不可忽视。为此，广义水资源配置的理念、方法体系及配置模型被提出，取得了突破性成果。广义水资源配置理念较为超前，然而目前水资源配置工作大多基于水资源评价成果而开展，对于存在评价体系之外的大气降水、土壤水等非常规水源缺乏相应的基础数据积累，在实际使用中存在较大困难。为此，本文以胶州湾大官塘水库灌溉区为例，依托灌溉试验站田间降水-作物耗水-土壤水相互转化的长序列试验成果，建立灌溉区田间水分盈耗-灌溉-排水全过程的模型，制定不同类型农田和果园水库的水量分配仿真规则，构建灌田联合灌溉区水量分配仿真模拟模型，模拟灌田降水、土壤水、土壤水和水库的引、提灌溉水量以及相互转化关系，提出了基于正交试验的灌田联合灌溉系统水资源优化调控技术体系，为灌田联合灌田区水量分配方案、灌田和灌田调度规则及作物灌溉制度等提供理论依据。

1 研究区概况

大官塘水库（31.96°～32.07°N，117.13°～117.20°E）位于巢湖流域南淝河支流四里河上游，总库容1208万m³，死库容8万m³，兴利库容656万m³，流量以内有大官塘雨量站1处，纵河水库水位和下泄流量观测站1处，是一座以灌溉为主，结合防洪、农村生活供水和水产养殖等的反调节中型水库，水库左右岸各建有提水扬泵站4座，综合设计扬水能力2.7m³/s，但由于泵站原设计标准偏低，加之年久失修，现状泵站扬水能力仅为1.3m³/s。大官塘水库灌区国土面积30.8km²，其中水库上游集水面积21km²，总耕地面积20.7km²，农田15.7km²，具体多年平均农作物种植结构见表1。据水利普查数据，该区上游共有灌田148处，其中灌田大于5万m³共8处，1.5～5万m³共58处，1万m³以下82处，总灌田220万m³；下游共有灌田65处，其中灌田大于5万m³共1处，1.5～5万m³共18处，1万m³以下46处，总灌田67万m³。该区地质构造多为第三纪红砂岩、砂质页岩，无良好含水层发育，土壤质地较好，地下水储存平均仅为2～3 m³/km²，埋藏在50～60 m左右，且分布零散，只能满足部分地区农村人畜供水。因此，该区域灌溉水源主要依靠水库大官塘水库及上下游灌田拦蓄地表径流，是巢湖流域典型灌田灌溉系统，流域水系和水资源系统结构见图1。本文以此为研究区，开展基于模拟优化与正交试验的水资源优化配置研究，具体技术路线图见图2。
图 1 大官塘水库流域水系(a)和水资源系统结构概化图(b)
Fig.1 Watershed water map (a) and water resources system structure generalization (b) of Daguantang Reservoir watershed

2 基于 SCS 模型的降雨径流模拟

2.1 SCS 模型

SCS 模型是美国农业部水土保持局 (Soil Conservation Service, SCS) 于 1950s 研制的小流域设计洪水模型，它能反映不同土壤类型、不同土地利用方式及前期土壤含水量对降雨径流的影响。它基于流域的实际入渗量与实际径流量之比等于流域该场降雨前的最大可能入渗量 (或潜在入渗量 S) 与最大可能径流之比的假定基础上建立的，基本降雨径流关系为^16-17:

\[
R = \begin{cases}
\frac{(P-A \cdot S)^2}{P+(1-A)S} & (P \geq A \cdot S) \\
\frac{(P \cdot \lambda \cdot S)}{P \cdot \lambda \cdot S} & (P < A \cdot S)
\end{cases}
\]

式中，R 为径流量 (mm) ; P 为降水量 (mm) ; S 为当时最大可能入渗量 (mm); \lambda 为初损率。在美国的试验农业小流域一般取 \lambda = 0.2, 在运用该模型的时候, \lambda 的具体取值根据流域水文资料加以确定, 或用用水文相似区的取值, 本文将利用大官塘水库降雨及入库径流资料定 \lambda.

由于 S 值的变化范围很大，不便取值，因此引入无因次参数 CN (Curve Number)，其取值范围为 [0, 100], 定义经验关系如下^16-17:

\[
S = 254 \cdot \left(\frac{100}{CN - 1} \right)
\]

式中，CN 是一个无量纲参数，其反映流域前期土壤湿度 A (Antecedent Moisture Condition, AMC)、植被、坡度、土壤类型及土地利用现状的综合特性，能反映下垫面条件对产流影响的差异。

SCS 模型根据该次降雨前 5 d 降雨量把前期土壤湿度程度分为 3 级，分别代表干燥 (AMC I)、中等湿润 (AMC II) 和湿润 (AMC III) 3 种状态，且不同湿润状况的 CN 值有如下相互转换关系^15:

\[
CN_1 = CN_2 - \frac{20(100 - CN_2)}{100 - CN_2 + \exp[2.533 - 0.0636(100 - CN_2)]}
\]

\[
CN_3 = CN_2 \cdot \exp[0.00673(100 - CN_2)]
\]
表2 大官塘水库灌区前期土壤湿润程度等级划分标准
Tab.2 Antecedent soil moisture level grading standards of Daguantang Reservoir

<table>
<thead>
<tr>
<th>前期土壤湿润程度等级</th>
<th>前5日降雨总量/mm</th>
<th>旱季</th>
<th>生长季节</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMCⅠ</td>
<td><10</td>
<td><30</td>
<td></td>
</tr>
<tr>
<td>AMCⅡ</td>
<td>10−25</td>
<td>30−50</td>
<td></td>
</tr>
<tr>
<td>AMCⅢ</td>
<td>>25</td>
<td>>50</td>
<td></td>
</tr>
</tbody>
</table>

2.2 SCS模型参数的确定

大官塘水库灌区土壤分布主要以黄褐土与黄棕壤为主,其演化而来的耕作土壤为马肝土,该土质地黏重,土壤多为黏壤至黏土,按SCS土壤分类属C类土壤。SCS模型根据前期降雨指数(前5日降雨量之和)的大小将土壤前期水分划分为干燥(AMCⅠ)、中等湿润(AMCⅡ)、湿润(AMCⅢ)3个等级,根据研究区灌溉试验观测资料与实践经验,划分后期土壤湿润程度等级标准如表2所示。

统计大官塘水库灌区不同土地利用类型的面积与比例,结合水文土壤组特征及前期湿润程度条件,查CN值表⑿,确定AMCⅡ条件下的CN1值,其余CN2和CN3分别由式(3)和式(4)求取,CN计算值为:CN1 = 75.8, CN2 = 88.7, CN3 = 95.7。

为率定SCS模型的参数,选取大官塘水库灌区1991－2014年7场典型降雨过程,以前4场降雨过程建立模型,后3场降雨过程进行模型验证。运用遗传算法⑽优化率定日尺度下的模型参数λ,其中目标函数为:
式中，M_{ij}为第 i 次降雨过程的第 j 天的模拟入库径流量，Q_{ij} 为第 j 次降雨过程的第 i 天的实测入库径流量。SCS 模型参数的优化结果为 $\lambda = 0.069$，具体各场次降雨过程的拟合及验证结果如表 3 所示。

表 3 大官塘水库典型降雨径流过程模拟的率定及验证结果

<table>
<thead>
<tr>
<th>阶段</th>
<th>编号</th>
<th>起止日期</th>
<th>降水量/mm</th>
<th>实测入库径流量/万 m³</th>
<th>模拟入库径流量/万 m³</th>
<th>误差/%</th>
<th>Nash-Sutcliffe 效率系数</th>
</tr>
</thead>
<tbody>
<tr>
<td>率定期</td>
<td>19910608</td>
<td>1991-6-8—1991-6-15</td>
<td>310.40</td>
<td>363.20</td>
<td>364.02</td>
<td>-0.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19910801</td>
<td>1991-8-1—1991-8-7</td>
<td>197.70</td>
<td>354.19</td>
<td>343.86</td>
<td>2.92</td>
<td>0.977</td>
</tr>
<tr>
<td></td>
<td>19980629</td>
<td>1998-6-29—1998-7-4</td>
<td>146.50</td>
<td>233.75</td>
<td>229.65</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20000602</td>
<td>2000-6-2—2000-6-3</td>
<td>107.00</td>
<td>141.36</td>
<td>166.53</td>
<td>-17.80</td>
<td></td>
</tr>
<tr>
<td>验证期</td>
<td>20030708</td>
<td>2003-7-8—2003-7-11</td>
<td>221.20</td>
<td>436.83</td>
<td>433.70</td>
<td>0.72</td>
<td>0.969</td>
</tr>
<tr>
<td></td>
<td>20050706</td>
<td>2005-7-6—2005-7-11</td>
<td>223.70</td>
<td>355.67</td>
<td>396.50</td>
<td>-11.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20080815</td>
<td>2008-8-15—2008-8-17</td>
<td>85.00</td>
<td>119.84</td>
<td>113.50</td>
<td>5.29</td>
<td></td>
</tr>
</tbody>
</table>

* 实测入库径流量是由水文逐日水位与下渗流量观测值计算逐日入库径流量后累加而得。

基于 SCS 模型的降雨径流模拟模型在率定期 4 场典型降雨过程的模拟与实测入库径流量的绝对误差在 0.23%~17.80%之间，Nash-Sutcliffe 效率系数为 0.977；验证期 3 场典型降雨过程的模拟与实测入库径流量的绝对误差在 0.72%~11.48%之间，Nash-Sutcliffe 效率系数为 0.969，可见，在建模率定和模型验证时的误差较小，精度较高，表明该模型用于大官塘水库灌区的降雨径流模拟是合适的（表 3）。

3 基于仿真规则的库塘联合灌溉系统水量分配模拟模型

3.1 库塘联合灌溉系统水资源结构概况与描述

如何在兼顾和权衡水资源与水资源系统结构的自适应性上，实现对复杂水资源系统结构的模型化，是构建水量分配模拟模型的关键问题之一^{[20-21]}。本文借鉴虚拟水库的概念，将上下游分布于广而大的塘库进行虚拟化。1）将上游（澜河干渠以北）所有与灌溉渠道连通具有调节功能的塘库合并成一个“虚拟水库”，称为“上游调节塘库”，相关的人流和排洪水都进行合并处理；2）将所有无与灌溉渠道连通的独立塘库合并为一个“虚拟水库”，称为“下游独立塘库”，相关的人流和排洪水都进行合并处理；3）将下游（澜河干渠以南）所有与引水渠道连通具有调节功能的塘库合并成一个“虚拟水库”，称为“下游调节塘库”，相关的人流和排洪水都进行合并处理；4）将所有无与引水渠道连通的独立塘库合并成一个“虚拟水库”，称为“下游独立塘库”，相关的人流和排洪水都进行合并处理。通过上述抽象化处理后，大官塘水库灌溉系统的水资源结构分别为：大官塘水库、“上游调节塘库”、“下游独立塘库”、“下游调节塘库”和“下游独立塘库5部分。

3.2 各计算单元中基本元件的水量平衡方程

3.2.1 田间水量平衡方程

田间水量平衡方程式如下：

$$
W_{ij} = W_{i,j-1} + P_i + M_{ij} + G_{ij} - K_{ci,j} \cdot ET_{0i} - S_{ij} - X_{ij}
$$

式中，$W_{ij}, W_{i,j-1}$ 分别为第 j 田种作物第 i 时段末和时段初的田间贮水量 (mm); P_i 为第 i 时段的降雨量 (mm); M_{ij} 为第 i 田种作物第 j 时段的田间灌溉水量 (mm); G_{ij} 为第 i 田种作物第 j 时段的田间蒸发量 (mm); $K_{ci,j} \cdot ET_{0i}$ 为第 i 田种作物第 j 时段的田间蒸渗量 (mm); S_{ij} 为第 i 田种作物第 j 时段的间耗水量 (mm); X_{ij} 为第 i 田种作物第 j 时段的田间渗漏量 (mm)。

田间贮水量 W_{ij} 的计算公式为：

$$
W_{ij} = h \cdot c_{ij} + \gamma \cdot H_{ij} + \theta_{ij}
$$

式中，$h \cdot c_{ij}$ 为第 i 田种作物第 j 时段的田间水深 (mm)，$\gamma \cdot H_{ij}$ 为第 i 田种作物第 j 时段的田间灌溉水量 (mm)，θ_{ij} 为第 i 田种作物第 j 时段的田间蒸发量 (mm)。
的计算土层深度 (mm); γ 为计算土层深度的土壤干容重 (g/cm³); θ,ω 为第 i 种作物第 j 时段的土壤含水率 (占干土重的比例)。

农田灌溉水量 Mij 的计算公式为:

\[M_{ij} = \frac{\alpha \cdot MQ_{ij}}{SQ_{ij}} \times 10^{-7} \] \hspace{1cm} (8)

式中, MQij 为第 i 种作物第 j 时段的从供水源取水量 (m³); α 为农田灌溉水有效利用系数; SQij 为第 i 种作物第 j 时段的灌溉面积 (hm²)。

作物需水量 ETn 小时计算公式为 \[ET_{n,ij} = ET_0 \cdot Kc_{ij} \] \hspace{1cm} (9)

式中, ET0 为第 j 时段的参考作物蒸腾量 (mm/d); Kcij 为第 i 种作物第 j 时段的作物系数。ET0 采用彭曼—蒙蒂 (Penman-Monteith) 公式 \[ET_0 = \frac{0.408(\Delta \cdot R_n - G) + \gamma \frac{900}{T + 273} \cdot U_2 (e_s - e_v)}{\Delta + \gamma (1 + 0.34U_2)} \] \hspace{1cm} (10)

式中, ET0 为参考作物蒸腾量 (mm/d); \(\Delta \) 为温度饱和水汽压曲线在 T 处的切线斜率 (kPa/°C); \(R_n \) 为净辐射 (MJ/(m²·d)); G 为土壤热通量 (MJ/(m²·d)); \(\gamma \) 为湿温度表常数 (kPa/°C); T 为平均气温 (°C); U2 为 2 m 高处风速 (m/s); \(e_s \) 为饱和水汽压 (kPa); \(e_v \) 为实际水汽压 (kPa)。

依赖安徽省主要作物需水量等值线图研究成果，参照联合国粮农组织 (FAO) 推荐的 84 种作物的标准作物系数和修正公式(21)，结合滞史杭和八斗灌溉试验站历年灌溉试验成果，综合确定各作物不同生育阶段的作物系数 \(Kc \)。

3.2.2 水库水量平衡方程

大官塘水库水量平衡方程式如下:

\[V_{k,j} = V_{k,j-1} + P_j \cdot SS_k \times 10^{-1} + W_{k,j} - MQ_{k,j} - M_l - M_e - S_k - X_k \] \hspace{1cm} (11)

式中, \(V_{k,j} \), \(V_{k,j-1} \) 为大官塘水库第 j 时段和第 j-1 时段的库容 (万 m³); \(P_j \) 为第 j 时段的降雨量 (mm); \(SS_k \) 为水库的水面面积 (km²); \(W_{k,j} \) 为第 j 时段入库水量 (万 m³); MQ_{k,j} 为水库第 j 时段农业灌溉供水量 (万 m³); \(M_l \) 为水库第 j 时段农业灌溉供水量 (万 m³); \(M_e \) 为水库第 j 时段生态环境供水量 (万 m³); \(S_k \) 为水库第 j 时段的蒸发渗漏损失水量 (万 m³); \(X_k \) 为水库第 j 时段的弃水量 (万 m³)。

3.2.3 堰坝水量平衡方程

堰坝水量平衡方程式如下:

\[V_{l,j} = V_{l,j-1} + P_j \cdot SS_l \times 10^{-1} + W_{l,j} - MQ_{l,j} - S_l - X_l \] \hspace{1cm} (12)

式中, \(V_{l,j} \), \(V_{l,j-1} \) 分别为第 k 处 堰坝第 j 时段和第 j-1 时段的蓄水量 (万 m³); \(P_j \) 为第 j 时段的降雨量 (mm); \(SS_l \) 为第 k 处堰坝的水面面积 (km²); \(W_{l,j} \) 为第 k 处堰坝第 j 时段的来水水量 (万 m³); MQ_{l,j} 为第 k 处堰坝第 j 时段灌溉供水量 (万 m³); \(S_l \) 为第 k 处堰坝第 j 时段的蒸发渗漏损失量 (万 m³); \(X_l \) 为第 k 处堰坝第 j 时段的弃水量 (万 m³)。

3.3 库塘联合灌溉系统水量分配模拟模型运行规则制订

经多次实地调研和专家咨询讨论，在对大官塘水库水源水库库区水水资源特点和开发利用现状充分理解基础上，将实践经验用数学思维定量化后，确定了如下水量分配原则: 1) 大官塘水库在保障农村生活用水和生态环境用水安全的前提下，合理分配其他水库蓄水量; 2) 各类库塘的蓄水量在任何情况下均应全部合理分配供给农业灌溉，当塘坝蓄水量为 0 时，均需具体作物生长与灌溉制度从水库中合理分配，提水灌溉。根据上述原则，确定了大官塘水库库区供水与取水的优先顺序:

1) 水源供水的先后顺序为: 弃水 (塘坝、水库) → 塘坝放水→ 水库放水。具体地说，对于大官塘水库上游集水区，如是塘坝控制区来水优先充蓄塘坝，灌满后则产生塘坝弃水，此时优先用塘坝弃水，不足水量由塘坝供给，最后不足水量从水库提水; 同时从水库提水还可以充蓄上部调节塘坝，剩余塘坝弃水和非塘坝控制的来水充蓄水库，灌满后则产生水库弃水进入下游区。对于下游区，上游水库弃水优先充蓄上游调节塘坝，灌满后则产生塘坝弃水。
调节灌溉。2)用水户取水的优先顺序为：基本需水(农村生活与生态需水之和)→生产需水(农业灌溉)。具体地，优先满足基本用水需求，然后再进行农业灌溉供水。

依据库塘灌溉系统水量分配原则及灌区内水源供水与用水户取水的顺序，制订了库塘灌溉系统水量分配模型的具体规则，具体如下：

3.3.1 上游区水量分配仿生规则

规则1，对于上游非塘坝控制水源，直接形成来水进入水库；对于上游塘坝控制水源，优先选择上游塘坝，蓄满后产生来水进入水库；对于水源来水优先蓄满水库，蓄满后形成来水进入下游区；结束程序。

规则2，对于上游初始缺水量减去上游弃水量，如果大于零运行规则3，否则，上游弃水量减去上游初始缺水量作为水库来水蓄满水库，蓄满后形成来水进入下游区，结束程序。

规则3，计算上游区塘坝可供水量，依据规则2计算后的缺水量减去上游区塘坝可供水量，如果大于零则运行规则4，否则结束程序。

规则4，计算下游区水库水位水量和水库可供水量的最小值，以此为依据，作为下游区水库可供水量，用由规则3计算后的水量减去下游区水库可供水量，如果大于零则为下游区最终水量，否则结束程序。

依据公式(6)和灌区灌溉制度计算下游区作物需水量，如果需水量等于零，则运行规则1，否则以需水量分配作为下游区的初步水量，首先判断下游区是否有水，若有水则运行规则2，否则运行规则5。

3.3.2 下游区水量分配与渠道规则

规则5，对于下游非塘坝控制水源，直接形成弃水进入下游；对于下游塘坝控制水源和上游水库弃水，优先选择下游塘坝，蓄满后产生弃水进入下游；对于下游独立塘坝控制来水，优先选择独立塘坝，蓄满后产生弃水进入下游；结束程序。

规则6，对于下游初始缺水量减去下游弃水量，如果大于零则运行规则7，否则，下游区弃水量减去下游初始缺水量为弃水量排出区域，结束程序。

规则7，计算下游区塘坝可供水量，依据规则6计算后的缺水量减去下游区塘坝可供水量，如果大于零则运行规则8，否则结束程序。

规则8，计算下游区从水库引水能力和水库可供水量的最小值，以此为依据，作为下游区水库可供水量，用由规则7计算后的水量减去下游区水库可供水量，如果大于零则为下游区最终水量，否则结束程序。

依据公式(6)和灌区灌溉制度计算下游区农作物需水量，如果需水量等于零，则运行规则5，否则以需水量作为下游区初步水量，首先判断下游区是否有水，若有水则运行规则6，否则运行规则7。

3.4 库塘联合灌溉系统水量分配模型的参数率定

库塘联合灌溉系统水量分配模型参数率定后，按照水资源在实际水资源系统中的流动方向与供给关系，将各计算单位及其基本连接起来，编写描述水量分配模型参数率定的计算程序，实现库塘联合灌溉系统水量分配的仿真模拟。该模型拟定存在作物的灌溉制度、作物非充分灌溉条件下的耗水经验公式或折算系数、土壤基本特征参数、上下游灌溉水有效利用系数等参数。这些参数的合理确定决定了模型的通用性。

本文采用经验与智能优化相结合的方式来率定模型参数，其率定过程如下：

1) 据调查，目前大官塘灌区习惯种植水稻，灌溉主要针对水稻基本采取常规大水漫灌，而旱作物灌溉基本采取保苗补充性灌溉的方式，量化确定该区现状灌溉模式为：(1)水田采用常规灌溉方式，当稻田没有水层时，(即 h<0 mm)，对水稻进行灌溉，水灌至稻田水层水深 50 mm；(2) 当灌水受到影响(即 0~40 cm 的平均土壤含水率低于土壤田间持水含水率的 50%)持续 5 天后，进行补充性保苗灌溉，灌水至 0~40 cm 的平均土壤含水率达到土壤田间持水含水率的 90%；(3) 水稻田间持水水深跟灌溉水深上限一致 Hw = 50 mm。

2) 依据黄照权、姚冬至先后在不同水源条件下观察水稻不同生育期不同断面水天数的 ev 值，计算经验公式如下：

\[
\begin{align*}
\epsilon_v &= \begin{cases}
ET_v(1.70 \times 10^{-7}T^2 - 9.24 \times 10^{-7}T + 1.23 \times 10^{-7} + 0.998) & \text{分蘖期} \\
ET_v(2.80 \times 10^{-7}T^2 - 2.98 \times 10^{-7}T - 1.21 \times 10^{-7} + 1.005) & \text{拔节期} \\
ET_v(-2.00 \times 10^{-7}T^2 + 5.80 \times 10^{-7}T - 7.72 \times 10^{-7} + 1.0) & \text{抽穗开花期} \\
ET_v(-1.80 \times 10^{-7}T^2 + 1.41 \times 10^{-7} - 4.14 \times 10^{-7} + 1.004) & \text{成熟期}
\end{cases}
\end{align*}
\]
对于旱作物，当土壤含水率 0.50<θ<0.75时，作物蒸腾平均折算系数 φr = 0.8，则 ev = 0.8×ETr，当土壤含水率 0.35<θ<0.50时，作物蒸腾平均折算系数 φr = 0.4，则 ev = 0.4×ETr。

3）依托测史仪器，对不同作物的蒸腾试验进行定期灌溉试验，结合实际土壤含水率来综合确定土壤的基本特征参数。具体为：土壤 0~40 cm 含水率 θr = 0.35，田间持水含水率 θr = 0.29，凋萎含水率 θr = 0.16，旱作物土壤计算土层深度 Hr = 400 mm，水稻土壤计算土层深度 Hr = 300 mm，计算土层深度的土壤干容重 γ = 1.42 g/cm³。

4）以某一典型年（2001年）实际日用水过程作为模拟模型的用水目标，以上游塘坝及水库取水灌溉量的模拟值与实际调查值之差的平方和最小为优化目标，运用遗传算法[19-20]求解优化模型，优化率定上下游的灌溉水有效利用系数等参数，具体为上游灌溉水有效利用系数 αr = 0.59，上游灌溉水有效利用系数 αr = 0.57，上游灌溉水有效利用系数与该区实际调查值 0.6 左右相符，可见上述库塘系统水量分配模拟模型用于大官塘水库区的灌溉过程仿真模拟是适宜的。

4 基于正交试验的库塘联合灌溉系统水资源优化调控模型

4.1 库塘联合灌溉系统水资源优化调控模型的构建

4.1.1 目标函数 本文中库塘联合灌溉系统水资源优化调控的目的是在保障基本需水供水安全的前提下，通过水资源优化调控实现经济效益最大，具体目标函数为：

\[F = \max \left\{ \sum_{i=1}^{n} \delta_i B_i Y_i - \sum bkd_j - \sum Ints_j - \sum Ints_j - \sum Inb_j \right\} \] (14)

式中，δi 为第 i 种作物第 j 年的价格（元/kg）；Bj 为第 i 种作物第 j 年的播种面积（hm²）；Yj 为第 i 种作物第 j 年的产量；由具体不同作物灌溉水量计算表（水稻模型）（kg）；bkd 为泵站第 j 年的提水电费投入（元）；Ints 为上行塘坝灌溉容积工程投资平均折算至第 j 年的投入（由具体泵站提水灌溉水量来求取）（元）；Ints 为下游塘坝灌溉容积工程投资平均折算至第 j 年的投入（元）；Inb 为水库提水坝站恢复和提升供水能力的工程投资平均折算至第 j 年的投入（元）。

4.1.2 调控变量 由前述分析可知，大官塘水库区灌溉区现有问题如下：1）上游塘坝蓄水能力偏小，尤其下游调节塘坝的蓄水容量明显不足，导致水库系统弃水偏多，无法充分发挥调节作用；2）上游区种植结构不协调，现有灌溉制度不合理，特别是上游水稻播种面积明显偏大，加之现有灌溉系统以常规大水漫灌，水稻蓄水较深，较浅，导致灌溉水量突出。

为此，本文选取调控变量如下：1）上游作物种植结构，Bj；2）上游作物种植结构，Bj；3）水稻浅湿灌溉间歇天数，Tj；4）水稻间歇灌溉水深，Hj；5）上游独立塘坝容量，Vlon；6）上游调节塘坝容量，Vlon；7）下游独立塘坝容量，Vlon；8）下游调节塘坝容量，Vlon；9）水库泵站提水能力，Qn。

4.1.3 约束条件 1）田间灌溉水量确定为（6）式；2）大官塘水库水量平衡约束条件为（11）式；3）塘坝水量平衡约束条件为（12），上述约束均为线性约束。4）水库泵站提水能力约束：上行塘坝区水系不能满足灌溉需求需时，需从水库提水灌溉，因此要考水库泵站提水能力的限制。5）其他约束：如灌溉保证率约束，设计参数的非负性约束，灌溉供水渠道最大输水流量等。

4.2 库塘联合灌溉系统水资源优化调控模型的求解

运用正交试验原理，设置调控变量 A，上游塘坝容量，B，水库泵站提水能力，C，水稻间歇灌溉的间歇天数，D。水稻田间灌溉水深为 3 水平 4 中因素的正交试验表[24-25]。结合前文构建的降雨径流模拟模型和水量分配仿真模型，通过正交试验结果得出最优组合后，再以此最优组合为输入，以逐次作物种植结构为优化变量，运用遗传算法[19-20]求解在最优组合下的最优作物种植结构与作物收益，从而实现对库塘联合灌溉系统水资源优化调控模型的求解。

4.2.1 调控变量变化范围的确定 1）上游塘坝容量，根据区域，现状塘坝蓄水深度都在 0.8~1.5 m 之间，蓄水少，占地多。为此，通过对塘坝的清淤整治，提高蓄水至 2.5~3.5 m，则可扩大塘容至现状的 2~3 倍。在清淤整治的基础上，新建塘坝以增加塘坝蓄水容量，则由于占地的投入，导致塘坝扩容投入会明显增加。为此，本文选择的三水平分别为：1）局部塘坝清淤整治；2）全部能清淤的塘坝均清淤整治；3）在塘坝清淤的基础上
上, 进行堆坝新建, 以增加上下游堆坝蓄水容量。具体 A 影响因素的 3 水平值见表 4。

② 水库提水能力: 据总结, 大型水库现状提水能力仅为 1.3 m3/s, 可以通过泵站维修改造提高泵站提水能力, 也可通过新建泵站以进一步增加泵站的提水能力, 但新建泵站由于占地与土建工程的投入, 导致泵站提水能力提升的投入明显增大。本研究选择因素 B 的 3 个水平分别为: 1) 局部大修; 2) 提高泵站提水能力; 3) 采用泵站提水能力恢复至设计能力基础上, 进行泵站的扩建, 以提高水库一级泵站提水能力。具体因 B 的 3 水平 B_1, B_2 和 B_3, 分别为 2.1, 2.7 和 3.3 m3/s。

③ 水稻间歇灌溉的间歇天数。水稻间歇灌溉在促进植物物的灌溉试验与大田推广中取得良好的效果, 但大田水稻灌区水稻灌溉仍以常规灌溉为主, 只有局部采取水稻间歇灌溉方式。根据调查, 肥东及八斗等灌溉试验站长序列水稻间

水稻灌溉试验结果确定因 C 的 3 个水平, 具体见表 5。

4.13.2.2 正交试验选优分析 由前述分析, 本文正交试验选优设置为 3 水平 4 因素, 根据正交试验原理$^{[24-25]}$, 设计正交表 $L_4(3^4)$. 运用正交试验分析原理与方法, 经极差分析求取系统最优控制组合参数, 见表 7. 由表 7 极差分析结果可知, 各因素对系统综合指标的影响大小依次为: $R_2 > R_4 > R_3 > R_1$, 且最优因素组合为 $A_3B_1C_1D_1$。

4.2.3 作物种植结构优化调整分析 大官塘灌区作物种植结构, 小麦与油菜、玉米与大豆的生长期, 作物需水量较大, 需水规律基本一致, 可分别归类为冬小麦和油菜类作物, 作物种植为一季中熟, 为秋季水稻(表 1)。因此, 作物种植可简化为水稻(秋季早作物)一多季作物轮作, 作物需水量主要取决于水稻播种面积。此外, 该区下游农田灌溉水源条件好, 引水灌溉风水能可满足下游 5.87 km2 水稻灌溉需求, 在水资源优化配置时, 先后满足下游 5.87 km2 水稻的灌溉。基于此, 作物种植的调控变量为水稻种植面积 B_1。

将前述正交试验最优组合 $A_3B_1C_1D_1$ 的具体参数作为模型输入, 以大官塘灌区上游不同来水频率不同初始蓄水量下的水稻播种面积为流量控制, 以公式 (14) 为目标函数, 运用遗传算法$^{[19-20]}$ 求解水资源优化调控模型, 得出逐月适宜的水稻播种面积(图 3)。大官塘水灌区上游不同来水频率不同初始蓄水量下适宜的水稻播种比例见表 8。

在考虑工程措施与非工程措施综合作用下, 对库塘联合灌溉系统进行水资源优化调控后, 灌区灌溉过程得以明显改善, 如表 8。1978～1979, 1994～1998 年连续干旱作用下, 适宜水稻播种面积出现一定的下降外, 其余年份基本能满足在灌区种植最大适宜水稻种植比例 (耕地的 70%)。下游区种植最大适宜水稻种植比例 (耕地的 90%) (图 3), 可见, 通过库塘灌溉系统水资源优化调控, 可实现水量跨年甚至多年间合理调配, 提高灌区抗旱减灾能力, 保障农村经济可持续发展。

4.2.4 库塘联合灌溉系统水资源优化调控结果分析 以图 1 中逐月水稻播种面积代入前述构建的库塘联合
表 7 大官塘水库灌区水资源调控正交试验的极差分析
Tab.7 Range analysis of orthogonal experiment of water resources regulation in Daguantang Reservoir irrigation district

<table>
<thead>
<tr>
<th>试验号</th>
<th>因素</th>
<th>作物总收益/万元</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>292363.0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>293854.4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>293708.5</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>296281.5</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>295711.8</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>293884.2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>296108.2</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>294992.1</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>293776.8</td>
</tr>
</tbody>
</table>

K_1 879925.9 884752.6 * 881239.2 881851.5
K_2 885877.4 * 884558.2 883912.6 883846.7
K_3 884877.0 881369.5 885528.5 * 884982.1 *
k_1 293308.6 294917.5 * 293746.4 293950.5
k_2 295292.5 * 294852.7 294637.5 294615.6
k_3 294959.0 293789.8 295176.2 * 294994.0 *
R 333.5 1127.7 891.1 1043.5

* 表示最优值。

表 8 大官塘水库灌区上不同降雨频率不同初始蓄水量下适宜的水稻种植比例
Tab.8 Appropriate rice planting ratio under different rainfall frequencies and initial water storage capacities in upstream of Daguantang Reservoir irrigation area

| 年降雨量/ mm | 降雨频率 | 丰水年 | 初始蓄水量/ m³ | 上游适宜水稻种植
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$p>1171.1$</td>
<td>$P<20%$</td>
<td>丰水年</td>
<td>>500</td>
<td>9.89 70%</td>
</tr>
<tr>
<td>$971.3<p\leq1171.1$</td>
<td>20% \leqslant $P<50%$</td>
<td>产水年</td>
<td>>500</td>
<td>9.89 70%</td>
</tr>
<tr>
<td>$839.6<p\leq971.3$</td>
<td>50% \leqslant $P<75%$</td>
<td>产水年</td>
<td>>700</td>
<td>9.89 70%</td>
</tr>
<tr>
<td>$586.9<p\leq839.6$</td>
<td>75% \leqslant $P<95%$</td>
<td>枯水年</td>
<td>>700</td>
<td>9.89 70%</td>
</tr>
<tr>
<td>$p\leq586.9$</td>
<td>$P\geq95%$</td>
<td>干旱年</td>
<td>>700</td>
<td>9.89 70%</td>
</tr>
</tbody>
</table>

水资源优化调控模型体系，求取模拟年份内逐月水量调度过程与作物收益，并分析了不同来水频率平均作物收益及与现状的对比分析结果。

由图 3～图 5 及表 9 可知，大官塘水库灌区在库塘联合灌溉系统水资源优化调控下，可显著改善灌区农业灌溉供需合理性，具体结果如下：

1）在模拟计算的 45 a 中，多年平均水稻种植面积由 14.93 km² 提高至 15.33 km²，同时还显著降低了年平均总需灌溉需水量及缺水量，多年平均总需灌溉需水量降低了 426.8 万 m³，降幅达 37.6%；多年平均总灌溉缺水量减少了 196.7 万 m³，多年平均缺水率由 18.0% 降低至 1.0%。
2) 在模拟计算的 45 a 中，虽塘坝多年平均供水量与现状基本持平，但塘坝供水的合理性得到显著提升，综合（75%<P<95%）年均供水量高达 764.1 万 m³，增幅达 44.9%；干旱年（P>95%）年均供水量达到 596.5 万 m³，增幅达 20.8%，增强了塘坝的供水能力，提升了塘坝枯水期的供水能力。

3) 在模拟计算的 45 a 中，多年平均从水库取水量降低了 239.3 万 m³，降幅达 73.7%，显著降低了从水库灌溉抽取量；水库多年平均蓄水量由 449.5 万 m³提高至 543.9 万 m³，增幅达 21.0%，多年平均最低蓄水量由 146.1 万 m³提高至 323.7 万 m³，提高了 1.21 倍，年最低蓄水量低于 80 万 m³农业灌溉控制线的年份由 21 a 降至 3 a，显著提高了水库多年平均蓄水量，明显降低了水库蓄水量在年际及年内的变化幅度。有力保障大
5 结论

1) 通过工程措施（上下游塘坝蓄水能力和水库泵站提水能力）与非工程措施（库塘系统供水规则、作物种植结构、水稻灌溉间歇天数、水稻田间蓄水深度灌溉制度）的综合作用，以保障灌区基本需水（包括农村生活需水与生态环境需水）供水安全的前提下的经济效益最大化为目标，依托灌溉试验站田间降水-作物耗水-土壤水相互转化的长序列试验成果，综合运用系统仿真与正交试验原理，提出了基于仿真模拟与正交试验的库塘联合灌溉系统水资源优化调控技术体系，并以大官塘水库灌区为例开展应用研究。

2) 应用该水资源优化调控技术体系优选了大官塘水库灌区适宜的水利工程规模与布局（上游塘坝容量 500 万 m³，下游塘坝容量 190 万 m³，上游水库提水泵站能力恢复至 2.1 m³/s），确定了适宜的节水灌溉技术模式与灌溉制度，制定了库塘灌溉系统科学的水量调度规则，提出了具有可操作性的作物种植结构调整规
则。通过与现状灌溉模式下农业灌溉水量供需过程及作物收益的对比分析，结果表明：1）在保障农村生活和
生境需水量需求下，多年平均总灌溉缺水量减少了 196.7 万 m³，每年平均缺水量由 18.0%降低至 1.0%。2）
改善了农田灌溉水的合理性，提升了农田的年际供水能力，增强了农田灌溉水的供水能力。3）提高了水库多
年平均蓄水量，明显降低了水库蓄水量在一年及年间的变化幅度。有力保障了水库在灌区水资源逐年调控
作业的发挥，为大田农作物和水资源分配提供了保障。4）灌区作物收益随降雨频率的增加而增加，明显提高了灌区旱期的作物收益，显著增强了抗旱减灾能力。

6 参考文献

[1] Su XL, Kang SZ. Research advances and key topics on optimal allocation of water resources based on ecosystem in the arid

科学进展, 2015, 26(2): 287-295.]

[8] Chen XN, Duan CQ, Qiu L et al. Application of large scale system model based on particle swarm optimization to optimal
林等. 基于粒子群的优化灌溉系统水资源优化配置的应用. 农业工程学报, 2008, 24(3): 103-106.]

[9] Chen WB, Dong ZC, Zhang YF. Optimization the allocation of irrigated areas water resources based on memory gradient
合遗传算法的灌溉区水资源优化配置. 农业工程学报, 2008, 24(6): 10-13.]

[11] Liu JY, Zhang Q, Deng XY et al. Quantitative analysis the influences of climate change and human activities on hydrologi-
宇等. 气候变化及人类活动对鄱阳湖流域径流过程影响的定量分析. 湖泊科学, 2016, 28(2): 432-443.]

Engineering*, 2007, 38(2): 163-170. [赵勇, 陆书裕, 孙书华. 广义水资源合理配置研究(II)——模型. 水利学报,

[13] Han YP, Lei HJ, Pan HW et al. Evaluation on water resources sustainable utilization based on virtual water and general-
基于虚拟水和广义水资源的区域水资源可持续利用评价. 水利学报, 2011, 42(6): 729-736.]

[14] Zhao Y, Lu CY, Qin CH et al. Study on rational deployment of generalized water resources III. Application. *Journal of Hy-

[15] Zhang LB, Zhang ZY, Jin JL et al. Study on simulation model for reservoir-pool water resources system in reservoir irriga-

