Assessment of the fish index of biotic integrity and its relationship with environmental factors in the Xiliao River Basin

ZHANG Hao\(^1,2\), DING Sen\(^2\), ZHANG Yuan\(^2\), JIA Xiaobo\(^2\), MENG Wei\(^2\) & GUO Biao\(^1,3\)

(1: Ocean College, Hebei Agricultural University, Qinhuangdao 066003, P. R. China)
(2: Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China)
(3: Bohai Fisheries Research Institute of Tianjin, Tianjin 300457, P. R. China)

Abstract: The environmental quality of Xiliao River Basin is assessed based on the fish index of biotic integrity (F-IBI). Protection limit values of the environmental factors correlated with the F-IBI are determined by the method of locally weighted regression scatterplot smoother (LOWESS). The results indicated that five indices, including the percentage of the Cohoidae fish, the number of demersal fish species, the number of omnivorous fish species, the number of tolerant fish individuals and the percentage of the nests spawning fish individuals, were suitable for constructing the F-IBI assessment system. The ratio method is used to unify dimensionless parameters. The 95% quantile of the F-IBI in all reference sites is used as the reference value of health conditions. Forty four sampling sites of Xiliao River Basin were assessed by F-IBI. The results found that five sites (11.4%) were in excellent grade, nine sites (20.5%) were in good grade, twelve sites (27.3%) were in normal grade, eleven sites (25.0%) were in poor grade, and seven sites (15.9%) were in very poor grade. Electrical conductivity, ammonia nitrogen, alkalinity and proportion of sand were negatively correlated with F-IBI scores in the Xiliao River Basin, whereas slope and proportion of grassland were positively correlated with F-IBI scores. The results of LOWESS and independent sample test indicated that F-IBI scores significantly changed when the electrical conductivity, ammonia nitrogen concentration, alkalinity, proportion of sand and proportion of grassland reached the protection limit value, which was 531 μS/cm, 0.55 mg/L, 4.4 nmol/L, 47.2% and 37.0%, respectively.

*国家自然科学基金项目(41401066)和国家水体污染控制与治理科技重大专项(2012ZX07501-001-04)联合资助。
**通信作者; E-mail: dingsen@craes.org.cn.
The results of this study could provide beneficial information for the regional environmental management of fish integrity protection in the Xiliao River Basin.

Keywords: Fish index of biotic integrity; LOWESS; Xiliao River Basin; environmental factors

水体的生物学评价对评估水体生态系统完整性和水生生物保护具有重要意义。生物完整性指数（index of biotic integrity，IBI）作为一种较为成熟的生物学评价方法，已得到了广泛认可和应用。关于IBI的研究，众多学者较多注重于对其研究的内容不断改进和完善，如拓展生物类群、完善指标体系、构建方法和健康评价标准等，并对不同的水体类型进行健康评价，而关于环境因子与IBI之间的相互关系以及环境因子保护限值的研究鲜有报道。

我国关于生物学评价的研究多集中于地表径流连续性的水体。辽河所处区域气候干旱少雨，多数支流常出现季节性断流，此外，对辽河流域开展的水质生物学评价研究尚不多见，仅见高珍等以大型底栖动物为研究对象建立了本区域的水质生物评价体系。本研究尝试构建辽河流域鱼类生物完整性指数（fish index of biotic integrity，F-IBI），了解流域内各调查样点的健康状况，并从水化学物理生境和土地利用等方面筛选出对该流域F-IBI有重要影响的环境因子并计算其保护限值，以期为流域鱼类保护和环境管理提供科学依据。

1 材料与方法

1.1 研究区域概况

辽河（41.1°～45.2°N，116.7°～124.2°E）位于我国北方典型的农业区与牧业区交汇过渡地带，流域面积约为20.1×10^4 km^2，其干流长为827 km，流域内大的支流有西拉木伦河、老哈河、教来河等。该流域的主要气候特征为干旱少雨，其水年蒸发量远大于补给量，水土流失和草场荒漠化严重，区域内大部分河流处于全年断流或季节性断流状态。该区域的环境压力主要来自自身和人类干扰。

1.2 调查方法

2012年8月在辽河流域设置44个调查断面（图1）。对于可涉水河流使用电鱼法进行样本调查，对于

![图1 西辽河流域调查点位分布](Fig. 1 Distribution of the sampling sites in the Xiliao River Basin)
不可涉水河流采用刺网采样（孔径大小为 5 cm）和电鱼法相结合的调查方法，每个断面的调查距离约为300 m，调查时间为30 min。对采集的鱼类进行物种鉴定和生物测量，并最终放归河流。

环境因子调查主要涉及水化、物理生境和土地利用 3 方面内容。水化指标包括水温、溶解氧（DO）、pH、电导率（Cond）、浊度（Tur）、悬浮物（SS）、氨氮（NH3-N）、硬度（THD）、碱度（Alk）、硝酸盐（NO3-）、总氮（TN）、磷酸盐（PO43-）、总磷（TP）和高锰酸盐指数（CODmn）等，水温、DO、pH 和 Cond 采用 YSI Pro2030 多参数水质分析仪现场测定，Tur 采用 HACH 2100Q 浊度仪现场测定，其它水质参数参考相关国家标准在实验室进行测定。水样采集、保存及测定参照《水和废水监测分析方法》（第 4 版）[20]。

物理生境特征指标包括坡降、螺旋度和底质粒径（巨砾、鹅卵石、小卵石、砂砾和泥沙的比例）；其中坡降和螺旋度采用 ArcGIS 9.3 软件进行分析，底质粒径组成用箱线图进行现场分析，并将粒径大于 128 mm 的定义为巨砾，粒径为 64 ~ 128 mm 的为鹅卵石，粒径为 16 ~ 64 mm 的为小卵石，粒径为 4 ~ 16 mm 的为砂砾，粒径小于 4 mm 的定义为泥沙。

土地利用方式包括未利用地、水域、林地、建设用地、耕地和草地等。本研究分析了调查样点河岸带两侧各 3 km 和样点上、下游各 3 km 范围内的土地利用情况，该数据使用 ArcGIS 9.3 软件分析获得。

1.3.1 F-IBI 评价计算 该过程包括 4 个基本步骤：（1）按照样点的筛选，参照拟建水源等的标准化方法[10]进行参考点的筛选，即根据《地表水环境质量标准》（GB 3838-2002）和生境评分结果对样点进行评估，样点水质为 II 类以上，生境评分为 140 分及以上，不同种类活动强度与河岸土地利用类型两项指标得分（≥30）均较高的为参照点，水质为 V 类及劣 V 类，生境评分为 120 分以下，不同种类活动强度与河岸土地利用类型两项指标得分（<25）均较低的采样点为受损点。（2）IBI 指标体系的构建。综合参考现有鱼类 IBI 的相关研究成果[13,15,21]，并结合本次鱼类调查的实际情况，从 5 个方面进行评价体系构建：物种类组成与丰富度、耐受性和敏感性、营养结构、鱼类数量与健康状况，繁育种及幼体。从上述 5 个方面共选取对环境变化较为敏感的 20 个指标作为评价体系的拟建指标（表 1）。（3）指标的筛选。参考当前 IBI 计算中的指标筛选方法[21-22]，对上述指标依次进行分布范围筛选、判别能力分析、相关性分析等，最终选取适合作为该区域 F-I BI 的构建指标，其中分布范围筛选是指候选指标在超过 5% 以上样点得分不为 0，否则放弃该评价指标[21]；判别能力分析是指对参考点和受损点在 25%~75% 分位数分布范围（即箱体 IQ 值）重叠情况的比较，若箱体没有重叠，则 IQ 值为 3，若箱体部分重叠，但是彼此的位值均不在对方箱体内，则 IQ 值为 2，若箱体重叠且一方中位值在对方箱体内，则 IQ 值为 1，若箱体重叠且彼此中位值均在对方箱体内，则 IQ 值为 0。在研究中仅对 IQ 值 ≥2 的情况做进一步分析[22]；相关性分析指通过判别能力分析的各候选指标进行 Pearson 相关性分析，对于 |r| > 0.9 的指标仅选取其一[21]。（4）西辽河 F-I BI 的健康评价。对各构建指标按比值法进行量纲统一[13,22]，各样点 F-I BI 值用百分制表示。以参照点 F-I BI 值分布的 95% 分位数作为健康评价标准，对于 95% 分位数的分布范围进行 4 等分，分别划分出亚健康、一般、差和极差的评价标准。

1.3.2 环境因子保护限值计算 环境变量同 F-I BI 进行 Spearman 相关性分析，对具有显著相关性的环境变量，利用局部加权回归散点修匀法（locally weighted regression scatterplot smoother, LOWESS）进行拟合，在曲线最为平滑的情况下（f = 0.9），将曲线明显转折处作为环境变量对 F-I BI 的保护限值[23]，并利用独立样本 t 检验法、各环境因子的保护限值进行评价。

环境和鱼类状况等基础性分析采用 Excel 2007 软件完成，参考点与受损点箱体图绘制采用 Origin 8.5 软件完成，环境因子保护限值分析和环境因子间相关性分析图采用 R 3.03 语言分析软件完成，相关性分析和独立样本 t 检验采用 SPSS 19.0 软件完成。

2 结果

2.1 鱼类组成和环境特征

本次调查共采集到鱼类样本 9899 尾，隶属于 5 亚 8 科 25 属 28 种。其中，鲤形目鱼类最多，有 20 种；鲈形目其后，有 4 种；鳍形目较少，有 2 种；刺鱼目和鲱形目鱼类最少，分别只有 1 种。鲈、黄颡鱼、鲤、宽鳍鱲和大鳞副泥鳅等物种在该流域内分布较少；北方条鳅、达里湖高原鳅、榛花鱼、洛氏鳅、鲫和麦穗鱼等物种数量较
多；鲫、棒花鱼、麦穗鱼、北方条鳅和泥鳅等物种分布较广。根据参考相关文献[9,12,24]和实际调查经验，对该流域各鱼类相关生态信息进行总结（表 2）。

表 1 西辽河流域鱼类 F-IBI 候选指标列表
<table>
<thead>
<tr>
<th>指标种类</th>
<th>候选参数</th>
<th>对干扰的响应</th>
<th>分布范围</th>
<th>参数缩写</th>
</tr>
</thead>
<tbody>
<tr>
<td>物种组成与丰度</td>
<td>鲤科鱼类物种百分比</td>
<td>上升</td>
<td>0~1</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>鲤科鱼类物种百分比</td>
<td>下降</td>
<td>0~1</td>
<td>M2</td>
</tr>
<tr>
<td></td>
<td>鲤虎鱼科鱼类物种百分比</td>
<td>下降</td>
<td>0~0.17</td>
<td>M3</td>
</tr>
<tr>
<td></td>
<td>鲤科鱼类物种百分比</td>
<td>下降</td>
<td>0~0.25</td>
<td>M4</td>
</tr>
<tr>
<td></td>
<td>鲤科鱼类物种百分比</td>
<td>下降</td>
<td>0~0.14</td>
<td>M5</td>
</tr>
<tr>
<td></td>
<td>鲤科鱼类物种百分比</td>
<td>下降</td>
<td>0~2</td>
<td>M6</td>
</tr>
<tr>
<td></td>
<td>鲤科鱼类物种百分比</td>
<td>下降</td>
<td>0~7</td>
<td>M7</td>
</tr>
<tr>
<td></td>
<td>鲤科鱼类物种百分比</td>
<td>下降</td>
<td>0~1</td>
<td>M8</td>
</tr>
<tr>
<td>耐受性和敏感性</td>
<td>敏感性鱼类个体数</td>
<td>下降</td>
<td>0~323</td>
<td>M9</td>
</tr>
<tr>
<td>营养结构</td>
<td>敏感性鱼类个体数</td>
<td>上升</td>
<td>0~249</td>
<td>M10</td>
</tr>
<tr>
<td></td>
<td>杂食性鱼类物种数</td>
<td>上升</td>
<td>1~11</td>
<td>M11</td>
</tr>
<tr>
<td></td>
<td>植食性鱼类物种数</td>
<td>下降</td>
<td>0~1</td>
<td>M12</td>
</tr>
<tr>
<td></td>
<td>昆虫食性鱼类物种数</td>
<td>下降</td>
<td>0~3</td>
<td>M13</td>
</tr>
<tr>
<td>鱼类数量与健康状况</td>
<td>总个体数</td>
<td>下降</td>
<td>1~624</td>
<td>M14</td>
</tr>
<tr>
<td></td>
<td>患病个体百分比</td>
<td>上升</td>
<td>0~0.03</td>
<td>M15</td>
</tr>
<tr>
<td></td>
<td>渔获量</td>
<td>下降</td>
<td>0.3~2081.4</td>
<td>M16</td>
</tr>
<tr>
<td>繁殖生态体</td>
<td>浮性卵类鱼类个体百分比</td>
<td>下降</td>
<td>0~0.14</td>
<td>M17</td>
</tr>
<tr>
<td></td>
<td>沉性卵类鱼类个体百分比</td>
<td>下降</td>
<td>0~0.1</td>
<td>M18</td>
</tr>
<tr>
<td></td>
<td>筑巢卵类鱼类个体百分比</td>
<td>上升</td>
<td>0~1</td>
<td>M19</td>
</tr>
<tr>
<td></td>
<td>特殊卵类鱼类个体百分比</td>
<td>下降</td>
<td>0~0.44</td>
<td>M20</td>
</tr>
</tbody>
</table>

对西辽河流域 44 个调查断面的 27 个水化学和物理生境等环境因子的整体状况进行分析。在水化学方面，参照《地表水环境质量标准》（GB 3838-2002），表明水温、DO 和 pH 均在合理范围内，COD\textsubscript{a}、NH\textsubscript{3}-N、TN 和 TP 浓度等水质评价所选变量的最大值均达到劣 V 类；物理生境方面，各环境因子变化幅度均较大（表 3）。

2.2 F-IBI 评价

2.2.1 参考点位选择 按照上述点位筛选方法，最终筛选出了 W11、W24、W55、W69 和 W76 共计 5 个点位为参照点；W6、W33、W39、W48、W93、W95、W99、W100 和 W106 共计 9 个点位为受干扰点。

2.2.2 指标筛选 各候选指标都通过了分布范围的筛选。在候选指标判别能力的筛选中，M2、M7、M10、M11 和 M19，共计 5 个指标在参照点和受干扰点有显著差异（P < 0.05），其中 M2、M11 和 M19 的 IQ 值为 3，M7 和 M10 的 IQ 值为 2（图 2）。对上述 5 个指标进行 Pearson 相关性检验（表 4），所有 |r| 值均小于 0.9，最终确定 5 个指标作为构建西辽河流域 IBI 评价的参数指标。

2.2.3 评分及评价 根据筛选出的构建西辽河流域 IBI 的各参数指标（表 5）及各自对干扰的反应，计算出各参数指标在样点的得分及 IBI 值，并确定西辽河流域鱼类生物完整性评价标准（表 6）。

2.2.4 评价结果 根据该流域 F-IBI 的健康评价标准，对全流域样点进行健康评价，结果发现健康点位 5 个，亚健康点位 9 个，一般点位 12 个，差点位 11 个，极差点位 7 个，其各自在全流域所占比例依次为 11.4%、20.5%、27.3%、25.0% 和 15.9%。健康和亚健康点位主要集中在河流源头区的中上游，较差和极差的点位主要分布在河流的下游区域（图 3）；同时，健康状况与其所处区域开发状况密切相关。
表 2 西辽河流域鱼类组成

<table>
<thead>
<tr>
<th>目</th>
<th>科</th>
<th>种</th>
<th>尾数</th>
<th>生长范围/ mm</th>
<th>生活水层</th>
<th>耐受性</th>
<th>食性</th>
<th>繁殖类型</th>
</tr>
</thead>
<tbody>
<tr>
<td>金鱼目</td>
<td>鲤科</td>
<td>草 Carassius auratus</td>
<td>813</td>
<td>26 – 636</td>
<td>中下层</td>
<td>耐污</td>
<td>杂食性</td>
<td>喙性卵</td>
</tr>
<tr>
<td></td>
<td></td>
<td>鲤 Cyprinus carpio</td>
<td>5</td>
<td>36 – 44</td>
<td>中下层</td>
<td>耐污</td>
<td>杂食性</td>
<td>喙性卵</td>
</tr>
<tr>
<td></td>
<td>鳜 Hemiculter leucisculus</td>
<td>17</td>
<td>48 – 133</td>
<td>中上层</td>
<td>耐污</td>
<td>杂食性</td>
<td>浮性卵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>洛氏鳐 Phoxinus lagoskii</td>
<td>93</td>
<td>22 – 167</td>
<td>中下层</td>
<td>敏感</td>
<td>杂食性</td>
<td>盐性卵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>马口鱼 Oparichthys bidens</td>
<td>150</td>
<td>54 – 162</td>
<td>中上层</td>
<td>耐污</td>
<td>肉食性</td>
<td>盐性卵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>兴凯鳐 Acheronathus chankaensis</td>
<td>138</td>
<td>24 – 98</td>
<td>中下层</td>
<td>耐污</td>
<td>植食性</td>
<td>特殊产卵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>桃花鱼 Abbotina rivularis</td>
<td>955</td>
<td>29 – 103</td>
<td>中下层</td>
<td>耐污</td>
<td>杂食性</td>
<td>枣巢产卵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>桃花鱼 Gobio richusoides</td>
<td>408</td>
<td>31 – 135</td>
<td>中下层</td>
<td>—</td>
<td>杂食性</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>鲤科</td>
<td>高体鲤 G. soldati</td>
<td>58</td>
<td>33 – 81</td>
<td>底层</td>
<td>—</td>
<td>昆虫食性</td>
<td>喙性卵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>清水鲤 Hucho chius aensus</td>
<td>18</td>
<td>35 – 66</td>
<td>底层</td>
<td>中等耐污</td>
<td>杂食性</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>麦穗鱼 Pseudorasbora Parva</td>
<td>631</td>
<td>26 – 90</td>
<td>底层</td>
<td>极度耐污</td>
<td>杂食性</td>
<td>盐性卵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>宽鳍细 Zacco platypus</td>
<td>1</td>
<td>< 20</td>
<td>中上层</td>
<td>耐污</td>
<td>杂食性</td>
<td>盐性卵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>东北鳅 Leuciscus walecki</td>
<td>47</td>
<td>52 – 125</td>
<td>中上层</td>
<td>—</td>
<td>杂食性</td>
<td>喙性卵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>彩石鳞鱼 Rhobus lighti</td>
<td>50</td>
<td>33 – 50</td>
<td>底层</td>
<td>极度敏感</td>
<td>杂食性</td>
<td>特殊产卵</td>
<td></td>
</tr>
<tr>
<td>鲤科</td>
<td>北方金滕 Nemachilus nadus</td>
<td>2925</td>
<td>32 – 136</td>
<td>底层</td>
<td>—</td>
<td>杂食性</td>
<td>盐性卵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>北方花鲫 Cobitis granlei</td>
<td>115</td>
<td>35 – 116</td>
<td>底层</td>
<td>中等耐污</td>
<td>植食性</td>
<td>盐性卵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>平鲫 Mugurnus anguillaceus</td>
<td>94</td>
<td>44 – 172</td>
<td>底层</td>
<td>耐污</td>
<td>杂食性</td>
<td>盐性卵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>纵纹黑鲫 Lefua costata</td>
<td>176</td>
<td>27 – 82</td>
<td>底层</td>
<td>—</td>
<td>杂食性</td>
<td>盐性卵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>达里湖短尾鲤 Triphysa dalica</td>
<td>1743</td>
<td>32 – 535</td>
<td>底层</td>
<td>中等耐污</td>
<td>杂食性</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>大鳞副泥鳅 Paramisgurnus dobryanus</td>
<td>2</td>
<td>53 – 128</td>
<td>底层</td>
<td>中等耐污</td>
<td>杂食性</td>
<td>沉性卵</td>
<td></td>
</tr>
<tr>
<td>鲟形目</td>
<td>鲟科</td>
<td>威 Silurus asotus</td>
<td>3</td>
<td>218 – 287</td>
<td>底层</td>
<td>中等耐污</td>
<td>肉食性</td>
<td>盐性卵</td>
</tr>
<tr>
<td></td>
<td>黄鳍鱼 Pelteobagrus fulvidraco</td>
<td>1</td>
<td>< 20</td>
<td>底层</td>
<td>耐污</td>
<td>肉食性</td>
<td>枣巢产卵</td>
<td></td>
</tr>
<tr>
<td>鲟形目</td>
<td>鲟科</td>
<td>红鳍鱼 Gymnocephalus pectoralis</td>
<td>13</td>
<td>26 – 53</td>
<td>底层</td>
<td>耐污</td>
<td>昆虫食性</td>
<td>盐性卵</td>
</tr>
<tr>
<td></td>
<td>红鳍鱼 Rhinogobius brennus</td>
<td>5</td>
<td>29 – 53</td>
<td>底层</td>
<td>耐污</td>
<td>杂食性</td>
<td>盐性卵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>波氏短吻鱼 R. cliftoni</td>
<td>185</td>
<td>22 – 51</td>
<td>底层</td>
<td>耐污</td>
<td>杂食性</td>
<td>盐性卵</td>
<td></td>
</tr>
<tr>
<td>塘鳢科</td>
<td>黄鳢 Hypoptopotes armatus</td>
<td>55</td>
<td>22 – 51</td>
<td>底层</td>
<td>中等耐污</td>
<td>昆虫食性</td>
<td>盐性卵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>刺鱼目</td>
<td>刺鱼科</td>
<td>中华刺鱼 Pungitius sinensis</td>
<td>279</td>
<td>26 – 67</td>
<td>中下层</td>
<td>敏感</td>
<td>昆虫食性</td>
</tr>
<tr>
<td></td>
<td>鳜形目</td>
<td>鳜科</td>
<td>鳜 Orzias latipes</td>
<td>81</td>
<td>23 – 41</td>
<td>中上层</td>
<td>中等耐污</td>
<td>昆虫食性</td>
</tr>
</tbody>
</table>

一表示信息不详。

表 3 西辽河流域环境特征

<table>
<thead>
<tr>
<th>环境因子</th>
<th>数值范围</th>
<th>环境因子</th>
<th>数值范围</th>
<th>环境因子</th>
<th>数值范围</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO/(mg/L)</td>
<td>4.32 – 11.11</td>
<td>TP/(mg/L)</td>
<td>0.01 – 0.56</td>
<td>TP/(mg/L)</td>
<td>0.01 – 0.56</td>
</tr>
<tr>
<td>pH</td>
<td>7.30 – 9.12</td>
<td>THD/(mg/L)</td>
<td>95.44 – 341.68</td>
<td>THD/(mg/L)</td>
<td>95.44 – 341.68</td>
</tr>
<tr>
<td>Conductivity (μS/cm)</td>
<td>140.8 – 885.0</td>
<td>Alk/(mmol/L)</td>
<td>1.14 – 7.15</td>
<td>Alk/(mmol/L)</td>
<td>1.14 – 7.15</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>0.03 – 4883.33</td>
<td>COD_m/(mg/L)</td>
<td>1.36 – 32.30</td>
<td>COD_m/(mg/L)</td>
<td>1.36 – 32.30</td>
</tr>
<tr>
<td>SS/(mg/L)</td>
<td>39.75 – 4622.00</td>
<td>SS/(mg/L)</td>
<td>0.11 – 19.66</td>
<td>SS/(mg/L)</td>
<td>0.11 – 19.66</td>
</tr>
<tr>
<td>NH_3-N/(mg/L)</td>
<td>0.06 – 4.27</td>
<td>NH_3-N/(mg/L)</td>
<td>0.06 – 4.27</td>
<td>NH_3-N/(mg/L)</td>
<td>0.06 – 4.27</td>
</tr>
<tr>
<td>NO_3^-/(mg/L)</td>
<td>0.01 – 0.84</td>
<td>NO_3^-/(mg/L)</td>
<td>0.01 – 0.84</td>
<td>NO_3^-/(mg/L)</td>
<td>0.01 – 0.84</td>
</tr>
<tr>
<td>TN/(mg/L)</td>
<td>0.27 – 7.11</td>
<td>TN/(mg/L)</td>
<td>0.27 – 7.11</td>
<td>TN/(mg/L)</td>
<td>0.27 – 7.11</td>
</tr>
</tbody>
</table>
图 2 通过判别能力筛选的 5 个候选指标在参照点和受損点的箱体图
Fig. 2 Box-plots of 5 candidate metrics which accepted by the discriminatory power analysis between reference sites and impaired sites

表 4 5 个候选指标的 Pearson 相关性计算
Tab. 4 The pearson correlation coefficient among 5 candidate biological metrics

<table>
<thead>
<tr>
<th>候选指标</th>
<th>M2</th>
<th>M7</th>
<th>M10</th>
<th>M11</th>
<th>M19</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M7</td>
<td>-0.45</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M10</td>
<td>-0.43</td>
<td>0.66</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M11</td>
<td>-0.34</td>
<td>0.55</td>
<td>0.42</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>M19</td>
<td>-0.62</td>
<td>0.57</td>
<td>0.50</td>
<td>0.77</td>
<td>1</td>
</tr>
</tbody>
</table>
表 5 F-IBI 构建参数

Tab. 5 Biological metrics of F-IBI

<table>
<thead>
<tr>
<th>指标种类</th>
<th>指标名称</th>
<th>指标缩写</th>
<th>最大值</th>
<th>最小值</th>
<th>95% 分位数</th>
<th>5% 分位数</th>
</tr>
</thead>
<tbody>
<tr>
<td>物种组成与丰度</td>
<td>频繁鱼类物种百分比</td>
<td>M2</td>
<td>1.00</td>
<td>0</td>
<td>1.00</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>底层鱼类物种数</td>
<td>M7</td>
<td>7</td>
<td>0</td>
<td>5.00</td>
<td>1.00</td>
</tr>
<tr>
<td>耐受性</td>
<td>耐受性鱼类个体数</td>
<td>M10</td>
<td>249</td>
<td>0</td>
<td>180.80</td>
<td>0</td>
</tr>
<tr>
<td>营养结构</td>
<td>杂食性鱼类物种数</td>
<td>M11</td>
<td>11</td>
<td>1</td>
<td>8.85</td>
<td>1.00</td>
</tr>
<tr>
<td>繁殖亲密度</td>
<td>繁殖亲密度</td>
<td>M19</td>
<td>0.43</td>
<td>0</td>
<td>0.36</td>
<td>0</td>
</tr>
</tbody>
</table>

表 6 西辽河流域鱼类生物完整性评价标准

Tab. 6 Assessment criteria for F-IBI in the Xiliao River Basin

<table>
<thead>
<tr>
<th>健康</th>
<th>亚健康</th>
<th>一般</th>
<th>较差</th>
<th>极差</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% 分位数范围</td>
<td>>95.72</td>
<td>77.66 - 95.72</td>
<td>59.59 - 77.66</td>
<td>41.53 - 59.59</td>
</tr>
</tbody>
</table>

![西辽河流域 F-IBI 评价结果](image)

Fig. 3 F-IBI assessment results in the Xiliao River Basin

2.3 重要环境变量筛选及其保护限值计算

分析 F-IBI 值与环境因子的相关关系，以反映水化学、物理生境和采样点周边土地利用类型对河流健康的程度。采用 Spearman 相关性分析 F-IBI 值与环境因子之间的相关性。结果表明：F-IBI 与水化学变量中的 Cond ($P = 0.002$), Alk ($P = 0.003$) 呈显著负相关，与 $NH_{3}-N$ ($P = 0.035$) 呈显著正相关；与物理生境变量中的坡降 ($P < 0.001$) 呈显著负相关，与泥沙比例 ($P = 0.038$) 呈显著负相关；与土地利用方式中的草地比例 ($P = 0.006$) 呈显著正相关 (表 7)。

西辽河流域 F-IBI 与 Cond 拟合曲线的拐点为 531 μS/cm，与 $NH_{3}-N$ 拟合曲线的拐点为 0.55 mg/L 和 1.35 mg/L，与 Alk 拟合曲线的拐点为 4.4 mmol/L，与坡降拟合曲线的拐点为 10.4%，与泥沙比例拟合曲线的拐点为 47.2%，与草地比例拟合曲线的拐点为 37.0% (图 4)。经独立样本 t 检验发现 Cond, Alk, 泥沙比
例,草地比例的拐点两侧 F-IBI 得分差异显著, 其 P 值依次为 0.002, 0.043, 0.044 和 0.009. NH_3-N 的保护限值 (0.55 mg/L) 有意义 (P = 0.026); NH_2-N 浓度 (1.35 mg/L) 无意义 (P = 0.19 > 0.05). 坡降的独立样本 t 检验 P 值为 0.801, 大于 0.05, 差异不显著.

表 7 西辽河流域 F-IBI 与环境因子之间的相关性系数

<table>
<thead>
<tr>
<th>环境因子</th>
<th>相关系数</th>
<th>环境因子</th>
<th>相关系数</th>
<th>环境因子</th>
<th>相关系数</th>
</tr>
</thead>
<tbody>
<tr>
<td>水温</td>
<td>-0.040</td>
<td>PO_4^{3-}</td>
<td>-0.200</td>
<td>小卵石比例</td>
<td>0.295</td>
</tr>
<tr>
<td>DO</td>
<td>-0.010</td>
<td>TP</td>
<td>-0.110</td>
<td>砂砾比例</td>
<td>0.296</td>
</tr>
<tr>
<td>pH</td>
<td>-0.010</td>
<td>THD</td>
<td>-0.280</td>
<td>泥沙比例</td>
<td>-0.313 *</td>
</tr>
<tr>
<td>Cond</td>
<td>-0.460 **</td>
<td>Alk</td>
<td>-0.440 **</td>
<td>未利用地比例</td>
<td>-0.274</td>
</tr>
<tr>
<td>Tur</td>
<td>-0.110</td>
<td>COD_M</td>
<td>-0.210</td>
<td>水域比例</td>
<td>-0.279</td>
</tr>
<tr>
<td>SS</td>
<td>-0.180</td>
<td>沉降</td>
<td>0.529 **</td>
<td>林地比例</td>
<td>0.230</td>
</tr>
<tr>
<td>NH_3-N</td>
<td>-0.320 *</td>
<td>蜗牛度</td>
<td>-0.217</td>
<td>建设用地比例</td>
<td>-0.199</td>
</tr>
<tr>
<td>NO_3^-</td>
<td>0.290</td>
<td>巨砾比例</td>
<td>0.193</td>
<td>草地比例</td>
<td>-0.192</td>
</tr>
<tr>
<td>TN</td>
<td>0.120</td>
<td>鹅卵石比例</td>
<td>0.227</td>
<td>草地比例</td>
<td>0.405 **</td>
</tr>
</tbody>
</table>

* 表示 P < 0.05; ** 表示 P < 0.01.

图 4 西辽河流域与 IBI 显著相关环境因子的 LOWESS 曲线及保护限值 (垂直虚线代表环境保护限值)

Fig. 4 The LOWESS curves and protection limits of environmental factors that significantly associated with IBI in the Xiliao River Basin (vertical dashed line means the protection limit values of environmental factors)

将对西辽河流域 F-IBI 有重要影响的环境因子做相关性分析, 结果表明: Cond 与 Alk 具有较高的相关性 (r = 0.870), 其它环境因子间的相关性较低, 相关系数均未超过 0.5 (图 5)。
图 5 西辽河流域环境因子间的相关性分析
Fig. 5 Correlation coefficients of environmental factors in the Xiliao River Basin

3 讨论

3.1 关于健康标准的划分

对于确定 F-IIB 核心参数的健康评价标准, 不同学者所采取的标准略有不同,[1,3,25-28] 这会造"成最终的评价结果有所差异。一般来讲, 参照点 IIB 值的 25% 分位数通常作为健康流量样点评价标准。该标准的前提是参照点选择较为容易, 且几乎不存在人为干扰。在参照点选取较为困难的情况下, 有学者提出[1,25] 以所有样点 IIB 值的 95% 分位数作为健康评价标准。此外还有学者依据研究流域本身的特征, 提出以参照点 50%分位数作为健康评价标准, 以 5% 分位数作为差等级评价标准, 置于两标准之间的作为亚健康评价标准[25-28]。因此, 应以所选择的标准能客观反映出研究流域整体及各个样点的健康状况为宜。本研究以参考点 F-IIB 值的 95% 作为健康样点评价标准, 对于小于该标准的进行 4 等分, 该评价结果所反映出的西辽河流域不同区域健康状况及整体健康状况与高永等[16] 利用大型底栖动物生物完整性指数评价的结果类似。本研究认为采用参考点 F-IIB 值的 95% 作为健康评价标准的依据适合该流域。

3.2 西辽河环境特征分析及对 F-IIB 的影响

西辽河流域是我国北方典型的农业区与牧业区交汇过渡地带, 所其流经区域为我国东北部的河流平原过渡地带。该流域上游以山地、林地和草原为主, 中下游以农田和城镇用地为主, 并伴有水域和荒芜用地[27,28]。根据国家《地表水环境质量标准》, 西辽河流域水体 COD_{m}, NH_{3}-N, TN 和 TP 等参数变化幅度均较大。该区域上游海拔较高, 人类活动相对较少, 水质较为清洁, 中下游区域受农田灌溉、放牧、城市生活污水及企业废水排放的影响, 水质较差。西辽河的物理生境特征以坡降变化和底质粒径组成的变化最为明显。坡降变化剧烈的原因与该流域海拔变化幅度有关, 较大的坡降有助于提高水体的氧含量[25]。底质粒径组成变化大说明该流域河流的生境差异较大, 底质粒径与水体自然地理地貌、气候特征及人类活动有关。

关于水质学对 F-IIB 影响的探讨: 第一, 通常认为河流中的 Cond 高低受自然和人为两方面因素影
响[30]，不同区域 Cond 背景值差异较大。Kimmel 等[31]以美国宾夕法尼亚州一条受煤矿废水影响的溪流为对象，提出保护该河鱼类群落结构的 Cond 保护限值为 3000 ~ 3500 μS/cm。本课题组在黄河流域的研究发现，保护溪流中大型底栖动物群落结构完整的 Cond 保护限值为 277.1 μS/cm (未发表)。本研究发现西辽河流域基于鱼类群落的 Cond 保护限值则为 531 μS/cm。造成上述研究结果差异的原因可能与流域环境背景值以及研究的生物类群不同有关。Kimmel 等[31]的研究中 Cond 保护限值较高与水体长期受到工矿废水影响有直接关系。在这种长期压力条件下，水生生物对环境干扰的忍受性提高，生物群落结构也逐渐趋于稳定，较高的环境背景压力下研究得到的保护限值有可能会高于其他低环境干扰压力区域的。西辽河流域处于高原向平原过渡地带，该流域大部分区域受到降水、灌溉等因素影响，河道内水量不足，而在放牧造成草地退化的同时，流域坡度差异导致水体对河岸侵蚀加剧，地表风化严重，最终造成水体 Cond 背景值整体偏高，其中 Alk 对 Cond 的贡献较大 (图 5)。另外，有研究发现[31-32]大型底栖动物对环境的干扰比鱼类更为敏感，不同的研究对象会使环境因子保护限值结果存在差异。第二，Alk 会对鱼类群落产生影响。黎道丰等[33]发现高盐碱度会降低鱼类种类数量并导致鱼类生长缓慢。本研究也发现相似的结果，碱度增加会降低 F-I-BI 评价得分。第三，本研究发现 NH₄-N 的有效保护限值为 0.55 mg/L，处于 II ~ III 类水质之间，这与国家《地表水环境质量标准》中渔业水质要求相一致。W102 点位的 NH₄-N 浓度达到 4.07 mg/L，但 F-I-BI 得分为 74.3。同时该点位草地比例较高 (84%)，河岸带湿生质量较好。一方面较好的河岸带生境条件有利于对外源 NH₄-N 输入起到缓冲作用[48]，另一方面较好的生境条件有利于维持较好的鱼类群落结构[34]。

关于物理因素对 F-I-BI 影响的探讨：西辽河区域处于内蒙古高原向辽河平原的过渡区域，坡降变化较大，同时受干早和人为干扰等因素的影响，草场退化和荒漠化情况不容乐观，因此确定上述环境因子的保护限值具有重要意义。坡降指河床地面单位距离的落差，其可以直接影响水体的流速，对于地质泥沙含量比较高的区域，水流速度较大导致水体的浓度升高，不利于光合作用的正常进行，导致藻类产氧降低，同时泥沙可堵塞鱼类呼吸影响造成影响[35]，有研究表明[18-19]泥沙对水体中的 NH₄-N 和重金属等有毒物质有吸附作用，并随着水流带到下游区域，对区域水质的改善具有一定的作用，但会加重下游区域的污染情况；草地对于提高河流生境质量，防止水土流失和土地沙漠化有着重要作用，同时可以缓解其它环境因子的负面影响[18]。因此，在区域管理中，恢复和保持草地比例，防止土地荒漠化和水土流失，控制河流底质中的泥沙比例，最终提高 F-I-BI 状况具有重要意义。

4 参考文献

张浩等：西辽河流域鱼类生物完整性指数评价及与环境因子的关系

[26] Astin L. Developing biological indicators from diverse data：the potomac basic-wide index of benthic integrity (B-IBI). Ecological Indicators，2007，7(4)：895-908.

[27] 孟伟，张远，邓炯辉. 辽河流域水生态分区研究. 环境科学学报，2007，27(6)：911-918.

[34] Pinto BCT，Araujo FG，Hughes RM. Effects of landscape and riparian condition on a fish index of biotic integrity in a large southeastern Brazil river. Hydrobiologia，2006，556(1)：69-83.

